

Remember that GeneXus determines the base table of the For each by the
transaction name that is mentioned nexto to it. In the example: Attraction
Why? Because it is the name of the transaction whose associated physical table
we want to navigate.

In addition, all the other attributes (in the for each body, printblocks, etc) must
belong to the extended table of the base table of the For each.

In our example, we called Attraction as Base transaction and, as we have said, it
corresponds to the name of the transaction whose associated physical table we want
to navigate.

The navigation list informs us that the base table is ATTRACTION, that the navigation
order will be determined by the primary key, AttractionId, and that the entire table will
be run through. COUNTRY will be accessed –to retrieve CountryName, the attraction
country-, and COUNTRYCITY to retrieve CityName.

We would obtain the same base table (Attraction) if instead of adding the
AttractionName attribute to the printblock we added it, for instance, in the order
clause.

In this case the navigation will be ordered by AttractionName, and for each record
the Country table will be accessed through the foreign key value, CountryId, to
retrieve the CountryName value. The same will happen with CountryCity to retrieve
the CityName value.

In the pdf file, only the country and city of each attraction will be printed (because
we didn’t include AttractionName to the printblock).

In addition, the navigation list informs us that the database doesn’t have an index
for the attribute used to order data, so we could experience low performance for this
query. Why?

Suppose that the Attraction table contains the data displayed on the slide. If we
need to obtain its records ordered by the AttractionName attribute, it will have to be
reordered somehow by this attribute.

The existence of an index at the physical level table would optimize this query.

Remember that indexes are efficient access paths to data. They act as dictionaries
that index by a certain attribute or set of attributes. In this case it is done one by
one: AttractionName.

The drawback of creating an index is that once it is created it must be maintained.
That is to say, if an attraction is added, such as the obelisk of Sao Paulo, the index
must be rearranged (as we can see above, by comparing the index to the left with
that of the previous page).

Creating an index from GeneXus for a database table is easy and it can be done at
any time.

Database management systems usually save data and access statistics, which give
them intelligence to choose the best access strategy based on the attributes
included in the query. For a better understanding of this topic, we recommend
reading our documentation according to the generator that you’re using.

Here we only need to know that if we indicate an order and no index has been
created, either a temporary one will be created, used for the query and then
discarded, or the DBMS will solve it with another strategy.

How? We look for the table, open it and go to the section that informs us about the
indexes defined.

The first three ones, which are preceded by the “I” prefix, are those automatically
created by GeneXus based on the primary and foreign keys in order to make
referential integrity controls more efficient.

We need to create a user index. To do so, we press Enter, which will display the
UAttraction default name. We change it as we want –by adding Name at the end,
for instance. Note the “U” prefix which makes reference to User.

Our index will be made up by the AttractionName attribute, ordered in ascending
order. If attraction names can’t be repeated, we can control this by setting the
index as Unique instead of Duplicate. In this case, a control will be automatically
performed when entering an attraction to confirm that there isn’t another attraction
with the same name –using this index. In our case, they can be repeated (for
instance, consider that countries usually have Obelisks), so we select the Duplicate
value.

Once we do this, pressing F5 will cause the database to be reorganized to create
this new index. Remember that the navigation report informed us that we didn’t
have an index to make this query. Note what it reads after the reorganization has
been completed: it tells us that the index we’ve just created will be used.

We can create and delete this index at any time, and upon pressing F5 and
reorganizing, we go back to the same situation we had before creating it.

How do we configure it to use descending order? Simply by placing the attribute
between brackets.

Now let’s suppose that we’re interested in obtaining a list of attractions whose names are
shown in alphabetical order between two values received in a parameter. For instance,
between “F” and “N”.

To do so, we enter the Where clauses indicated above.

Several Where clauses are equivalent to only one, where conditions are combined with the
“and” logical operator. That is to say, to be considered, records must meet all conditions
at once.

Note what happens when we remove the order clause. The data displayed will be the
same, but since no ordering criteria has been indicated, it has selected the primary key
order. This means that it will have to run through the entire table to keep the records
that meet all restrictions. The first record might fall within the range and the last one
too. This listing is not optimized!

Instead, if we specify the order AttractionName clause, there are 2 possibilities:

1) The physical index does not exist.
2) The physical index is defined as a user index.

We have already explained the first case. Let's see the second case.

If the query is sorted by AttractionName and there is a physical index created for that
attribute, GeneXus will use it. In this case the navigation list will inform us that it will not
be necessary to navigate all the base table.

Imagine that we are looking for a word that starts with "G" on a paper dictionary. We will
not search in the dictionary from the beginning to the end because it is sorted!! Here is
the same.

In order to determine the base table, it is the same if the order AttractionName clause
is present or not, because the AttractionName attribute is already present in the Where
clause, and the base transaction is specified next to the For each.

If possible, it is suggested to sort by compatible criteria with filters, so the query
will be optimized.
If this is not possible, anyway the DBMS will efficiently solve the query by
creating temporal indexes.

What result will be obtained for the above For Each command if the &start and &end
variables are empty? If there is an attraction with an empty name, it will be the only one
returned because it will be the only one that meets both conditions. Otherwise, there
won’t be any attractions listed.

Is it possible to add conditions to orders and filters so that they are applied only under
certain circumstances? For example, to only apply the first Where when the &start
variable is not empty. And to apply second Where when the &end variable is not empty.
The answer is yes. We can do it by adding conditions to Where clauses with when, as we
can see in the second For Each command. Where clauses will only be applied when the
condition is met. Thus, at runtime, when both variables are left empty, none of the Where
clauses will be applied and all the attractions in the table will be listed.

In the same way, we can add a condition to an order to have it applied or not, as we
showed in the third For Each command. In fact, a series of conditioned orders can be
indicated, in order to choose the first one whose condition is met.

Read more about orders and filters in the GeneXus wiki
(http://wiki.gxtechnical.com/commwiki/servlet/hwikibypageid?6075).

What happens when none of the records in the base table meet the conditions?

Suppose that in this case we want to print a message in the output to warn about this… to
do so we program the when none clause that closes the For Each command.

All the commands written between when none and endfor will be executed in sequence,
only in cases when no records of the For each base table that meet the conditions can be
found.

The execution of what comes after when none will mean that the search hasn’t found any
results; therefore, any attributes included will not be used to determine that table of the
For Each command –unlike the others.

As we already know, GeneXus determines the base table of the For each by the
transaction name that is mentioned nexto to it. In addition, all the other attributes
(present for example in Order and Where clauses) must belong to the extended table.

The attributes that are not considered are those mentioned within the When none clause.

The For Each command accepts more optional clauses. For example, there is another way
to filter the data we want to work with, such as Data Selectors. This topic will be
examined later. Read more about this object in our wiki:
http://wiki.gxtechnical.com/commwiki/servlet/hwikibypageid?5271.

Another optional clause that is added when the For Each command is being run within a
procedure, to update or delete database records, is the Blocking clause which allows
indicating that the update or deletion should be made in blocks of N records thus reducing
the number of accesses to the database.

The For Each command is included in a procedure, and we want to update the value of an
attribute that can’t have repeated values. For example, suppose that AttractionName has
a Unique index and the For Each command is run on record 1… When trying to change the
value of AttractionName of that record, so that it takes the “Eiffel Tower” value, the
Unique index will indicate that there is a record with that value and the update will not
take place. But if we want to perform an action in this case, we program the when
duplicate clause.

For Each commands can be used in procedures and events of other objects in which
database queries are allowed.

The same For Each logic is present in other ways to query the database, such as:

•Data Provider groups, and
•Grids with base table

Therefore, mastering this logic means that we have learned the fundamentals behind
GeneXus.

