

Video filmed with GeneXus X Evolution 3

P
ag

e1

 Modules

Welcome!

My name is Silvia Keymetlian, and I work for the GeneXus Support team.

Today, I will be telling you about the Module object, a new object in GeneXus X Ev3. I will be

showing you how to use it and the advantages that this object offers for understanding,

maintaining and integrating a KB.

We will start the presentation on modules by dividing it into four topics.

First, we will explain what the module object is, and how it is used from GeneXus, both in

existing and new knowledge bases.

We will then move on to view the behavior of modules in relation to folders.

Afterwards we will see what happens when we convert a KB into a new version, and the

aspects we should bear in mind regarding compatibility.

And we will end with the generators that support this functionality and which generators do

not.

Let’s then start by considering how to work with modules from GeneXus.

Video filmed with GeneXus X Evolution 3

P
ag

e2

We will start with an example of an ERP, like the one in the figure, where a resource is

requested, and if the resource is available on stock it is delivered. Otherwise, a purchase order

must be made to buy that product or the resource required.

We must then verify the existence of budget to that end, in which case the purchase is made

and later recorded in the accounting.

Following purchase of the resource, it is then delivered as previously.

In this case, each of these icons here includes several objects. These objects are usually

grouped to better understand the application, so that, for example, each developer focuses on

a group of objects or on the functionality that is developed.

Modules will be of help here in the sense that we may define a module in GeneXus and group

those objects in a GeneXus module.

Using modules will also imply a benefit for understanding the KB, for its maintenance, and for

integrating objects from different modules.

Even when a developer joins a work team, it is much easier to show him-her a functionality

through objects in a module than modules not sorted or organized within modules.

Previously, we did this in GeneXus by using folders, with a specific nomenclature to indicate

which objects belong to a specific functionality, but now there is a much easier way to do it.

That is why we say that using modules enables us to better understand the KB, its

maintenance and its integration.

Video filmed with GeneXus X Evolution 3

P
ag

e3

So, how do we define a module in GeneXus?

By simply clicking the right button on the Root Module, or on any other module we already

have, and –as with any other new object- “new / module”.

That is how we define a new module.

Video filmed with GeneXus X Evolution 3

P
ag

e4

Upon defining it, we are asked about properties such as name, description and other

properties associated with modules.

Once the module is defined, the resulting structure is similar to a structure of folders. In the

Evolution 3 version, all objects belong to a module. If we do not define our own modules, the

root module is always created by default for all KBs in Evolution 3.

Modules may also have sub-modules. In this case, the purchase module has the Authorizations

sub-module.

Video filmed with GeneXus X Evolution 3

P
ag

e5

Also, every time that we define an object, we may indicate the module it belongs to. From the

Module folder option, we indicate to which module that object will belong.

And when we define new modules, we may include objects in them with drag and drop.

Which objects may be defined within a module?

Domains, images, language, themes, attributes, tables, files, and others, will not belong to any

module because they are global objects of the whole knowledge base.

Win objects, just like work panels, menu, and menu bar, may only belong to the Root Module

because Win generators do not support that functionality.

Video filmed with GeneXus X Evolution 3

P
ag

e6

The other objects that appear in the column below…

…may belong to any module we define in the KB.

What does a module consist of?

Having defined a module, we may open it by clicking the right button “open” on the module.

There we will find three tabs:

One is called Interface, another one is Diagram, and the third one is Documentation.

The Interface tab is divided into three sections: Services, Data, and User Interface.

In the Services section we define what is known as the module’s Api, that is, the objects

included in this section may be Procedure, Data Provider, and Extended Object.

Video filmed with GeneXus X Evolution 3

P
ag

e7

The Data section includes transactions, business components, and SDTs. The User Interface

section includes the master page, web components, and web panels.

Every time that an object is included in a module, it is automatically organized into one of

these three sections.

Let’s then see how to determine which objects appear on the interface tab and which do not.

In the figure, we see the Purchase module we saw before.

The difference here is that when the module is opened in the interface tab, the purchase

transaction is now viewed, while the customer transaction is.

And why is that? It’s because the Purchase transaction has the Object Visibility property with

value Private. This is a new property of objects as from the introduction of modules in the KB.

Objects that belong to a module have an Object Visibility property with possible values Public

and Private.

Video filmed with GeneXus X Evolution 3

P
ag

e8

Public means that the object may be used from anywhere in the knowledge base. These

objects are the ones we see in the interface tab.

And Private means that it may be used only within the module, including sub-modules as well.

Therefore, a sub-module may use the private objects of the parent module.

By default, all objects have the Public property, and the list of those public objects constitute

the module’s interface. Private objects are not viewed on the interface tab, so this object may

not be used from any other object in the KB.

For example, if we want to make a call of the Purchase TRN from an object in the Root module,

 this case will result in a specification error.

And that’s because the object appears as private and may not be called from another object.

Video filmed with GeneXus X Evolution 3

P
ag

e9

So, there is where we must define interfaces to access that object, but we will not be able to

make a direct call to that object. That is how we manage which objects are viewed in the

Interfaces tab and which are not.

The other tab that appears in the module object is the Diagram tab, which enables us to view

how a module relates to the rest, which may be referenced or it may be a sub-module.

The sub-module relation appears when a module is part of another module; like in this case

Authorization -part of the Purchase module- which is a module of Purchase. It is there that we

show the relation with this dotted line.

On the other hand, the reference relation between modules is shown with a full line, indicating

in this case that, from the Purchase module, the procedure used is located in the Stock

module.

Also, we may double click to view, in the detail, which objects belong to a module and which

belong to the other module.

Video filmed with GeneXus X Evolution 3

P
ag

e1
0

And with the right button clicked on the Diagram tab, we get a contextual menu with other

options that enable us, for example, to add to other sub-modules or add all sub-modules to

see how they relate to one another.

Another aspect to bear in mind when working with modules is that we may have objects under

the same name with different modules.

In this case, we have the Product object inside the Purchase module, and the Product object

inside the Stock module.

Video filmed with GeneXus X Evolution 3

P
ag

e1
1

What we can do to exactly determine the object we are referring to is indicate it with the

QualifiedName property, which is the name of the module (dot) name of the object.

This is how we can have two objects with the same name in different modules. And when we

want to reference the objects, we will also have to write them down as Name of module (dot)

name of object…

Video filmed with GeneXus X Evolution 3

P
ag

e1
2

except for the case of objects in the Root module, because they do not belong to any module.

This is necessary only in the case of an ambiguity, when we have two objects with the same

name, and we will not have to reference the object with the module name in front when the

object is one of a kind.

We should also take into account that when we use modules in the KB, the URL of the objects

in our application is changed, because when we execute an object, from now we will get the

module name prior to the object name, for any generator.

And specifically in the case of the JAVA generator, we have to necessarily use the

packagename property to indicate the name of the package, and it is also added to the URL

generated to reference that object.

As we saw before, the purchase transaction has the object visibility property with value

Private, so we cannot make a direct call to that transaction, though we may make a dynamic

call to that transaction.

Video filmed with GeneXus X Evolution 3

P
ag

e1
3

For example, in this case, in the test2 event we are invoking the Purchase transaction as a

dynamic call. The only thing we must remember is that when the Expand dynamic call property

is set with value Yes and this transaction has the object visibility property as Private, it will

never be accessible for the caller, so it will not be included among the objects liable of being

executed.

Let’s now see the difference between using a module and using a folder in a GeneXus KB.

For instance, something we may do is to convert a folder into a module by clicking the right

button on a folder. This would be the easy way of turning the folders we were used to

handling, into modules.

Video filmed with GeneXus X Evolution 3

P
ag

e1
4

So, as we have seen, both modules and folders help us in organizing objects in a KB.

Altogether, they constitute a hierarchical tree where the Root Module is the root. In the dialog

of folder view, we can see the tree formed. Nevertheless, we must say that conceptual

differences exist between modules and folders.

One of those differences is that modules are part of the Qualified Name property and folders

are not. That enables us to have two objects with the same name in different modules.

Additionally, modules may be parents to folders, while folders may not be parents to modules.

Video filmed with GeneXus X Evolution 3

P
ag

e1
5

So, how do we decide when to use a folder and when to use a module?

The general rule is that we may use modules to encapsulate, and folders to organize the

objects within the module.

And what we must bear in mind in regards to modules when we convert a KB of versions prior

to Ev3 is that:

The Root Module is always created by default, and it is assumed that all objects belong to that

Root Module, except when we define new modules and we move those objects to the new

Video filmed with GeneXus X Evolution 3

P
ag

e1
6

modules. When we have objects with (dots) in the name, these will be replaced with an

Underscore (_) in the Name property.

In regards to the code generated, if we do not define new modules in the KB, the code

generated does not change. It will only make a difference when we start to introduce modules

in the KB. And regarding compatibility, after we have opened the KB with Ev3, we cannot open

it with previous versions because there is no compatibility in that sense.

And in the case of using GXserver, we will also need GXserver in Ev3. In Ev3, we must use the

same version of GeneXus and GXserver.

As we saw, then, the generators that support this functionality are the Java, Net, and Ruby

generators, as well as the generator for Smart Devices. WIN generators do not support this

functionality.

Now I would like to invite you to use GeneXus XEv3 and discover the benefits of this new

functionality. If you have any doubts, you may contact me through my email address:

silvia@genexus.com

mailto:silvia@genexus.com

Video filmed with GeneXus X Evolution 3

P
ag

e1
7

