Modules
Welcome!
My name is Silvia Keymetlian, and | work for the GeneXus Support team.

Today, | will be telling you about the Module object, a new object in GeneXus X Ev3. | will be
showing you how to use it and the advantages that this object offers for understanding,
maintaining and integrating a KB.

GeneXus =

Working With Modules
Modules vs. Folders

KB Conversion

Support

We will start the presentation on modules by dividing it into four topics.

First, we will explain what the module object is, and how it is used from GeneXus, both in
existing and new knowledge bases.

We will then move on to view the behavior of modules in relation to folders.

Afterwards we will see what happens when we convert a KB into a new version, and the
aspects we should bear in mind regarding compatibility.

And we will end with the generators that support this functionality and which generators do
not.

Let’s then start by considering how to work with modules from GeneXus.

Video filmed with GeneXus X Evolution 3

Pagel

Working With Modules GeneXUS

What?

REQUEST S1OCH

_yes
Resources stock? }'{

o Delivery
.3 @)
PURCHASES
‘Jﬁ; k\\\l i
ACCOUNTING _~ = @ BUDGET

=

We will start with an example of an ERP, like the one in the figure, where a resource is
requested, and if the resource is available on stock it is delivered. Otherwise, a purchase order
must be made to buy that product or the resource required.

We must then verify the existence of budget to that end, in which case the purchase is made
and later recorded in the accounting.

Following purchase of the resource, it is then delivered as previously.

In this case, each of these icons here includes several objects. These objects are usually
grouped to better understand the application, so that, for example, each developer focuses on
a group of objects or on the functionality that is developed.

Modules will be of help here in the sense that we may define a module in GeneXus and group
those objects in a GeneXus module.

Using modules will also imply a benefit for understanding the KB, for its maintenance, and for
integrating objects from different modules.

Even when a developer joins a work team, it is much easier to show him-her a functionality
through objects in a module than modules not sorted or organized within modules.

Previously, we did this in GeneXus by using folders, with a specific nomenclature to indicate
which objects belong to a specific functionality, but now there is a much easier way to do it.

That is why we say that using modules enables us to better understand the KB, its
maintenance and its integration.

Video filmed with GeneXus X Evolution 3

Page2

Working With Modules

What?

STOCK
REQUEST Understanding

_yes
-y = .
Resources stock? "" Maintenance

Q]/ Delivery
no .
@ = Integration

PURCHASES)

—

ACCOUNTING:SQ N @ BUDGET

=7 -

So, how do we define a module in GeneXus?

By simply clicking the right button on the Root Module, or on any other module we already
have, and —as with any other new object- “new / module”.

Working With Modules

GeneXus

How?

] Knowledge Base Navigetor ?x
Folder View

4+ Quick Acceas

&) Modules
[Main Programs
{4 [Root Module
3 Accounty New
BE] Purchase . .
e 3 Open F12
W) Proy Open Pant »
& Purcl
8 Sk A

Obyect CTRL-N
Module

Folder

tBo

B Gas X
5 Prod t
) Authonzy
G Common &8
) Contexih
&3 General\ =
£ SmactDel &
(D Wwiebigs
5 Budget
&) Documentation
) Files
& Domasms
8 Tables

N Properties Fa

Web Panel

Diagram

Procedure

References CTRL-F12

Mistory CTRL-MAYUSCULAS+H

BFd>e

Transaction
Export
Select Left Side To Compare

That is how we define a new module.

Video filmed with GeneXus X Evolution 3

Page3

Working With Modules ene us

How?

1 Knowledge Base Navigator 3 X
Folder View

+ Quick Access
&) Modules
7] Main Programs
[H Root Module

53]

[jﬁm
{3210) | Fiter
- Module: Purchases

Name Purchases
Description Manages the purchases
Module Folder Root Module
Object Visbiity Public

|

Upon defining it, we are asked about properties such as name, description and other

properties associated with modules.

Once the module is defined, the resulting structure is similar to a structure of folders. In the
Evolution 3 version, all objects belong to a module. If we do not define our own modules, the
root module is always created by default for all KBs in Evolution 3.

Working With Modules Gen eXUS

How?

] Knowledge Base Navigator o x
Folder View
+ Quick Access

&) Modules

&} Root Module

B8 Accounlypg

ﬁ Customer

fa] Product

[a] Purchase

(] Puthorizations |
B Stock

B GetStock

[Product

g Authorization

Commonipe

ElAccounting X | [l Purchase X

Name [Type | Desarption
5} i) Purchase Purchase Purchase

¢ Purchaseld id Purchase Id
* PurchaseDate Date Purchase Date
Customerid Numeric(4.0) Customer 1d
¢ CustomerName Character(20) Customer Name
EHE] une Invoiceline Invoice Line

¢ Productld Id Product Id

¢ Producthame Character(20) Product

¢ ProductStock Numeric(4.0) Product Stock

fu PurchaseProd... Price Price

* PurchaselineQty Numeric(4.0) Quantity

[PurchaselineA... Price Purchase Line Amount
fu PurchaseSubTotal Price Purchase Sub Total
Ju PurchaseTaxes Price Purchase Taxes

Modules may also have sub-modules. In this case, the purchase module has the Authorizations

sub-module.

Video filmed with GeneXus X Evolution 3

Page4

Working With Modules Genexus

How?
] Knowledge Base Navigator ax [Elfccounting X | [Purchase X
Folder View Name [Type | Desaription
=
* | Oick Alcoss 2 i Purchase [Purchase Puchese |
? Purchaseld id Purchase 1d
b Modules * PurchaseDate Date Purchase Date
ron # Customerid Numeric(4.0) Customer Id
¢ CustomarName Character(20) Customer Name
EHE] une Invoiceline Invoice Lne
€ Productld Id Product Id

¢ ProductName Character(20) Product
¢ ProductStock Numenic(4.0) Product Stock

Ju PurchaseProd... Price Price
s PurchaselineQty Numeric(4.0) Quantity
Ju Purchaselinea... Price Purchase Line Amount
Adoitoation fu PurchaceSubTotal Price Purchase Sub Total
: Commondci {:- PurchaseTaxes Price Purchase Taxes

Also, every time that we define an object, we may indicate the module it belongs to. From the
Module folder option, we indicate to which module that object will belong.

Working With Modules G en eXUS

v
N Ob t | (53 New Otyect]
|
| m
| Select 3 Category Select 2 Type Lad
) Commen Ak Busress Process Dagren | JFie e
3 Regomng = Dastboart A age P Stepe
< Web) Data Prowecter o) Larguace i Trame
< Wn 459 Dats Selecter 1 Masster Page T Trame fc
2 :""»‘"f" T3 Duta View Mer W Trarsacy
ay Wordow A Dagam = # Web Com
R —— Document 15 Parel for St Devices 3] Web Par
Oomen 55 Procedas D) wvon Py
Extomal Coect B ey o Wor We

0 " .

Saive pracedul (robleva. prscess wodate and repot data

Nare GetCumomer
Descrpton Get Customer
Modube, Feider B Archaves =
Creae Cancel
2) Gerersfived
° Be LN s
=X

And when we define new modules, we may include objects in them with drag and drop.
Which objects may be defined within a module?

Domains, images, language, themes, attributes, tables, files, and others, will not belong to any
module because they are global objects of the whole knowledge base.

Win objects, just like work panels, menu, and menu bar, may only belong to the Root Module
because Win generators do not support that functionality.

Video filmed with GeneXus X Evolution 3

Page5

The other objects that appear in the column below...

Working With Modules GeneXus

Which Objects can be Defined in a Module?

Domain, Image, Language, Theme, Attribute, Table, No
File

Work Panel, Menu, Menu Bar Root Module

Folder, Transaction, Procedure, Web Panel, Panel
for SD, Data Selector, SDT, Diagram, Document, Yes
External Object, Subtype Group

...may belong to any module we define in the KB.
What does a module consist of?

Having defined a module, we may open it by clicking the right button “open” on the module.
There we will find three tabs:

Working With Modules Genexus

Interface Tab

54 Purchases X
Filter

2) linterface

[Cr=ma] T —

One is called Interface, another one is Diagram, and the third one is Documentation.
The Interface tab is divided into three sections: Services, Data, and User Interface.

In the Services section we define what is known as the module’s Api, that is, the objects
included in this section may be Procedure, Data Provider, and Extended Object.

Video filmed with GeneXus X Evolution 3

Page6

The Data section includes transactions, business components, and SDTs. The User Interface
section includes the master page, web components, and web panels.

Every time that an object is included in a module, it is automatically organized into one of
these three sections.

Let’s then see how to determine which objects appear on the interface tab and which do not.

In the figure, we see the Purchase module we saw before.

Working With Modules GeneXus
Object Visibility Property
(J Knowbedge Base Narvgaor 3%l G5puchases X -

Folder View

+ Quack Acceas ‘

The difference here is that when the module is opened in the interface tab, the purchase
transaction is now viewed, while the customer transaction is.

And why is that? It's because the Purchase transaction has the Object Visibility property with
value Private. This is a new property of objects as from the introduction of modules in the KB.

Working With Modules GeneXUS

Object Visibility Property

) Knowtedge Base Navigator 8 x i Bl Purchases X - j‘l’mpenn
Folder View | Fater | 13321 | Fitter
+ Quick Acces Intert. = C t: Purch
; Name Purchase
chase Desarpton Purchase
Mocule [Folder Purchases

Business Component True

| E ::‘:: TN private

* Business Component properties
* Web Transaction properties
= Web nformaton
- Seaurity
Encrypt LRL paran No
Protocol specficat Unseaure (HTTP:)
* Java speofic

Objects that belong to a module have an Object Visibility property with possible values Public
and Private.

Video filmed with GeneXus X Evolution 3

Page7

Public means that the object may be used from anywhere in the knowledge base. These
objects are the ones we see in the interface tab.

And Private means that it may be used only within the module, including sub-modules as well.
Therefore, a sub-module may use the private objects of the parent module.

By default, all objects have the Public property, and the list of those public objects constitute
the module’s interface. Private objects are not viewed on the interface tab, so this object may
not be used from any other object in the KB.

For example, if we want to make a call of the Purchase TRN from an object in the Root module,

Working With Modules GeneXUS

Object Visibility Property

Folder View

hase.Call()

this case will result in a specification error.

Working With Modules GeneXUS 7

Object Visibility Property

2] Temt X I Naviganon \iew %

Web Panel Test Navigation Report

} B swtrage x

Pattemy

Q5 Tem
Specification Falled

L

Errars 5
© 20202 Transaction Purchase’ cannct be called, it is prevate to module ‘Purchases’. (Events, Loer 2

And that’s because the object appears as private and may not be called from another object.

Video filmed with GeneXus X Evolution 3

Page8

So, there is where we must define interfaces to access that object, but we will not be able to
make a direct call to that object. That is how we manage which objects are viewed in the
Interfaces tab and which are not.

The other tab that appears in the module object is the Diagram tab, which enables us to view
how a module relates to the rest, which may be referenced or it may be a sub-module.

Working With Modules GeneXUS

Diagram Tab
[Knowdedgs Eaxse Novigator LR x
Folder View
+ Queck Accens
o Purcheses o Stock
Marages the purchases | Manages the Inventory
Authorzabons
| Athorizanons
[Eoupen]

The sub-module relation appears when a module is part of another module; like in this case
Authorization -part of the Purchase module- which is a module of Purchase. It is there that we
show the relation with this dotted line.

On the other hand, the reference relation between modules is shown with a full line, indicating
in this case that, from the Purchase module, the procedure used is located in the Stock
module.

Also, we may double click to view, in the detail, which objects belong to a module and which
belong to the other module.

Video filmed with GeneXus X Evolution 3

Page9

Working With Modules Gen eXUS

Diagram Tab
"n-u—“ hases .’sna =
o L T ’"-w-—"-’]
| @ Viewstock Puste
. £ GeStoc
(B g] 4

And with the right button clicked on the Diagram tab, we get a contextual menu with other
options that enable us, for example, to add to other sub-modules or add all sub-modules to
see how they relate to one another.

Working With Modules Genexus

Diagram Tab
) Pocamige Baze iy 3 [Teem— E |i T Fropersa
Folder View & 5728 1
= v o Stock
) { Marages 7o puschaser Manages S lswertory

't

e~ 5 2

-.-. Aular v a

£ Soce Lamanzwvors x

U G s

k-

Another aspect to bear in mind when working with modules is that we may have objects under
the same name with different modules.

In this case, we have the Product object inside the Purchase module, and the Product object
inside the Stock module.

Video filmed with GeneXus X Evolution 3

Pagelo

Working With Modules Genexus

Qualified Name Property

3 Vrowledos Buse Havigatiy # % J| 5 Prchases Proset % [Stock Product X = || Propedem
Folder View | tare Tyoe 10... | For, | M ff 522101 | Fier
)5l Prouct T | " Tremsaction Product
¥ Froduds i Pr.. ‘ Nane Product
» Produsciiave Character(20) Pr No Descrpton Product
o ProducsStock Numerc(4.0) P N Modkde Foider Stock
] roducPrce ProdePrice ” Busness Comporent | Palse
? frodcDate Oate El Man orogr am Fae
ProducPrce Prce * o * StodF
Obpect vishikty bl
* Network
* Web Transacton properSes.
[- Web information
- Securty
Encrypt URL pavan No
Profocal speciicatl Unseaare $ITTP:)
* Data warehousng
= Transscton ntegnty
Cormt o0 @t Ted
=~ User interface

What we can do to exactly determine the object we are referring to is indicate it with the
QualifiedName property, which is the name of the module (dot) name of the object.

Working With Modules Genexus

Qualified Name Property

(3 Krowledon Base Nangenr P 1|) Prchames Producs % [i Stock Product X = || Properes
Folder View i L ! i

|

o

.
:
a
g
i :
2
e
CEEREEY ; *

* Wb Transacson proper Ses
~ Web nformason
- Securty
Encrypt LRL paves No
Profocol speciicat Unsecare PTP:)

This is how we can have two objects with the same name in different modules. And when we
want to reference the objects, we will also have to write them down as Name of module (dot)
name of object...

Video filmed with GeneXus X Evolution 3

Pagel 1

Working With Modules GeneXUS :

Grammar

'_] Purchases Product X [i2] Stock Product X E Test X

oduct.Call ()

except for the case of objects in the Root module, because they do not belong to any module.

This is necessary only in the case of an ambiguity, when we have two objects with the same
name, and we will not have to reference the object with the module name in front when the
object is one of a kind.

We should also take into account that when we use modules in the KB, the URL of the objects
in our application is changed, because when we execute an object, from now we will get the
module name prior to the object name, for any generator.

Working With Modules GE'n EXUS

URL Syntax

Java
.. [fservlet/packagename. module.object

.NET
.../module.object.aspx

Ruby

../module.object. html

SOAP Services
.../module.objectPwsdl

Rest Services
...[rest/module/object/1

And specifically in the case of the JAVA generator, we have to necessarily use the
packagename property to indicate the name of the package, and it is also added to the URL
generated to reference that object.

As we saw before, the purchase transaction has the object visibility property with value
Private, so we cannot make a direct call to that transaction, though we may make a dynamic
call to that transaction.

Video filmed with GeneXus X Evolution 3

Page12

Working With Modules GeneXUS '

Dynamic Calls

=]
X

Event 'Testl'

Call (s ase) -

For example, in this case, in the test2 event we are invoking the Purchase transaction as a
dynamic call. The only thing we must remember is that when the Expand dynamic call property
is set with value Yes and this transaction has the object visibility property as Private, it will
never be accessible for the caller, so it will not be included among the objects liable of being
executed.

Let’s now see the difference between using a module and using a folder in a GeneXus KB.

GeneXus =

Modules vs. Folders

For instance, something we may do is to convert a folder into a module by clicking the right
button on a folder. This would be the easy way of turning the folders we were used to
handling, into modules.

Video filmed with GeneXus X Evolution 3

Page13

Modules vs. Folders GeneXUS

Convert a Folder into a Module

Delete

Refere-cer

Missony CTRL « MAYUSCULAS + M

Convert 10 modle b

= L

So, as we have seen, both modules and folders help us in organizing objects in a KB.
Altogether, they constitute a hierarchical tree where the Root Module is the root. In the dialog
of folder view, we can see the tree formed. Nevertheless, we must say that conceptual
differences exist between modules and folders.

Modules vs. Folders GeneXUS

Module Folder

Used to organize objects / /
inakB

One of those differences is that modules are part of the Qualified Name property and folders
are not. That enables us to have two objects with the same name in different modules.

Modules vs. Foiders Genexus

Module Folder

Used to organize objects / /
in a KB
Qualified Name property / X

Additionally, modules may be parents to folders, while folders may not be parents to modules.

Video filmed with GeneXus X Evolution 3

Page14

Modules vs. Folders ene US

| Module | Folder
Used to organize objects J J
inakKB

Qualified Name property v/ X
Can have child X
Folder/Module

So, how do we decide when to use a folder and when to use a module?

The general rule is that we may use modules to encapsulate, and folders to organize the
objects within the module.

Modules vs. Folders Genexus

| Module | Folder

Used to organize objects J J
inakKB

Qualified Name property / X
Can have child X
Folder/Module

Organization

Use for Encapsulation within Modules

And what we must bear in mind in regards to modules when we convert a KB of versions prior
to Ev3 is that:

GeneXus

KB Conversion

+ Changes to the KB
* Root Module is created
+ All objects are assumed to belong to the Root Module
+ Dots (.) are replaced for Underscore (_) in the Name property

» Code Generation: Not affected

The Root Module is always created by default, and it is assumed that all objects belong to that
Root Module, except when we define new modules and we move those objects to the new

Video filmed with GeneXus X Evolution 3

Page15

modules. When we have objects with (dots) in the name, these will be replaced with an
Underscore (_) in the Name property.

In regards to the code generated, if we do not define new modules in the KB, the code
generated does not change. It will only make a difference when we start to introduce modules
in the KB. And regarding compatibility, after we have opened the KB with Ev3, we cannot open
it with previous versions because there is no compatibility in that sense.

And in the case of using GXserver, we will also need GXserver in Ev3. In Ev3, we must use the
same version of GeneXus and GXserver.

KB Conversion

« Changes to the KB
* Root Module is created
« All objects are assumed to belong to the Root Module
+ Dots () are replaced for Underscore (_) in the Name property

* Code Generation: Not affected

« Compatibility
+ No backward compatibility
« (GX and GXserver Ev3

As we saw, then, the generators that support this functionality are the Java, Net, and Ruby
generators, as well as the generator for Smart Devices. WIN generators do not support this
functionality.

Supporting Modules Not Supporting Modules
+ Java Web « Java Win
+ .NET Web * NET Win
* Ruby + Cobol
+ Smart Devices + RPG
+ Visual FoxPro
+ _NET Mobile

Now | would like to invite you to use GeneXus XEv3 and discover the benefits of this new
functionality. If you have any doubts, you may contact me through my email address:
silvia@genexus.com

Video filmed with GeneXus X Evolution 3

Page16

mailto:silvia@genexus.com

Thank you!

wiki.genexus.com

Silvia Keymetlian
silvia@genexus.com

Video filmed with GeneXus X Evolution 3

Page17

