GeneXus Course— Relations between actors from reality

Relations between actors of reality

COUNTRIES

—

L(y) ATTRACTIONS

CUSTOMERS

alTieg
s o= o= == == == == == == GEneXus”

In several examples at our travel agency we found that actors from reality relate to one
another in different ways. An example is an attraction that belongs to a category which in turn
may be the category of many attractions.

Attraction Information
Name Eiffel Tower

Category Nagf€ Monument

Photo

-Gene)(us"l

We saw that we can represent these relations, as we design transactions, by including a
transaction’s attributes in another transaction.

CATEGORY

ATTRACTION

GeneXus”

We have been told that the agency now works with providers who periodically offer the
agency visits to tourist attractions in different parts of the world.

B I EE) ‘-GGDEXU$'|

Each provider offers numerous tourist attractions, but each attraction is managed by a single
provider. To represent this reality we will create the Supplier transaction, where we will
register providers...

We do File...New...Object...name it Supplier.... And then add the attributes:

r — —— B
Mew Object - —— e
Create New Object
Select a Categony: Select a Type:
el Al Business Process Diagram n..,;'jFlIe @Oueﬁf
L -1 Businesslritelligen| |E& Dashboard 8] Image @9 Structure
+[51 Web % Data Provider 2 Language [Subtype |
i 4B Data Selector [E Master Page & Theme
il (3 Data View E Menu & Theme fo
= Diagram Menubar Transacti
@ Document E Panel for Smart Devices Web Conl
i Extemal Object I, Procedure @ Web Par,
i N I N I | 3
B
Mame: Supplied
| Description: Supplier
tl
i Folder: [Objects v]
[Create] [Cancel]

Supplierld as identifier, SupplierName to save the name of the provider, and SupplierAddress

to save its address.

[gdStart Page % Flight % Supplier* X -
|’Naﬂ | Type | Description Formula Nullable
E}- Supplier Supplier Supplier
F Supplierld Id Supplier Id Mo
= Suppliertame Name Supplier Mame Mo
i w SupplierAddress Address Supplier Address Mo
E 0 Web Form |‘6 Win Form ‘ Rules |ﬁ Events |@ Variables |e Help | &) Documenta... |=‘l- Patterns |

Through the transactions diagram object we can analyze the relation between suppliers and
attractions. We do ...New..Object of the Diagram type, and drag the Attraction and Supplier
transactions from the View Folder. We will see that we have not established any relation
between those two actors yet.

¥ Attractionld
AttractionName
Countryld
CountryName
Categoryld
CategoryName
AttractionPhoto
Cityld
CityName

[

Supplierld
Supplierlame
Supplierfddress

Because a tourist attraction has an only supplier offering it, we will include the supplier
identifier in the structure of the Attraction transaction, so we open that transaction and add
the Supplierld attribute. We also add the Supplier Name attribute because we will then be able
to show the name of the supplier in the screen corresponding to the attractions.

[Estart Page Flight X [l Supplier X | & Diagramb X | [&] Attraction X
|' Name | Type | Description | Formula Nullable
[EHE Attraction Attraction Attraction
- @ AttractionId Id Attraction Id Mo
- j< AttractionName Mame Attraction Name Mo
- A Countryld Id Country Id Mo
- ¢ CountryMame Mame Country Name
- A Categoryld Id Category Id Yes
- ¢ CategoryMName Mame Category Name
-2 AttractionPhoto Image Attraction Photo Mo
- Cityld Id City Id Yes
- ¢ CityMName Mame City Name
- A Supplierld Id Supplier Id Mo
- ¢ SupplierName Mame Supplier Name

We now create a new diagram, drag both transactions again... and we will see that there is
plain arrow pointing at Supplier, and a double arrow pointing at Attraction. And that tells us
that an attraction will have only one supplier and a supplier may offer numerous attractions.

e -

Aitractin & Suppler =

Attractionld o ¥ Supplierld)
AttractionMame SupplierMame
Countryld Supplierfddress
CountryName
Categoryld
CategoryName
AttractionPhoto
Cityld
CityName
Supplierld
SupplierName

In sum, if we add a transaction’s identifier attribute to another transaction (which, as we saw,
will play a role as foreign key here) a relation of 1 to many (also known as “1 to N”) will be
established, where the “many” side of the relation is where the foreign key is located.

If we now analyze which tables GeneXus will generate on the basis of that transaction design,
we will see that, from the Supplier transaction, it will create a SUPPLIER table with the same
structure as the transaction:

Start Page X FIigh‘t X 2= Diagramb X Artractipn X Supplier X (& Supplier x

|JName Type Description Formula
[=}-E {Supplier Structure

‘I_}' Supplierld Id Supplier 1d

= Supplieriame MName Supplier Mame

. Supplieraddress Address Supplier Address

And from the structure of the Attraction transaction GeneXus will create an ATTRACTION table
with the following structure:

Flight x = Diagram5 X .B.ttractipn X Supplier X = Supplier X [Attraction X

|'Nan1e Type Description Formula
[=+E Attraction Structure Attraction
i Attractionld Id Attraction Id
AttractionMame Mame Attraction Mame
Countryld Id Country Id
Cateqgoryld Id Category Id
AttractionPhoto Image Attraction Photo
i w Cityld Id City Id

If we compare the structure of the ATTRACTION table against that of the Attraction
transaction,

Flight o= Diagramb X & Supplier x = Supplier x =] Attraction X = Attraction X
|’Name Type Description Formula

d Attraction 1d

= AttractionMame MName Attraction Name
= Countryld Id Country Id
- w Categoryld Id Category Id
= AttractionPhoto Image Attraction Photo
= Cityld Id City Id
- Supplierld Id Supplier 1d
Flight x = Dizgrams X Supplier X = Supplier x Aftraction X = Attraction X ¥
[Na£ | Type | Description ‘ Formula MNullable
=+ Attraction Attraction Attraction
- @ AttractionId Id Attraction Id No
- 4 AttractionMame MName Attraction Name No
- @ Countryld Id Country Id No
¢ CountryName Name Country Name
- # Categoryld 1d Category Id Yes
-- ¢ CategoryMame Mame Category Mame
-3 AttractionPhato Image Attraction Photo Mo
- & Cityld d City Id Yes
CityName Name City Name
- @ Supplierld 1d Supplier Id Mo
¢ Supplerteme . (KOS Suppler Name

we will see that the CountryName, CategoryName, CityName and SupplierName attributes are
not included in the table because they are attributes inferred, which, as we saw, because they
are in the extended table of the ATTRACTION table, their value may be recovered from the
table where they are stored physically.

This is the most usual way of representing the relation 1 to many between two actors from
reality, that is: between two entities in our system.

However, there are other cases of 1 to many relations where we will use another type of
representation.

FLIGHT = > SEAT

GeneXus” |

Let’s recall the case of flights, where a flight has numerous seats and each seat is assigned to a
single flight, that is: in a relation 1 to many. Let’s open the structure of the Flight transaction to
see how we represent that relation....

@dstrtPage x | EFlioht x | E Supplier X | & Diagramb X | [Attraction X | & Diagram6® X | -

[’Name Type Description Formula Mullzble
=HE Flight

- @ Flightld Id Flight Id Mo

- 8a FlightDepartureCountryld Id Flight Departure ... Mo

-8, FlightDepartureCountryName ~ MName Flight Departure ...

-8 FlightDepartureCityld Id Flight Departure ... Mo

-8, FlightDepartureCityName Name Flight Departure ...

- Sa FlightArrivalCountryld Id Flight Arrival Cou... Mo

-8, FlightArrivalCountryMame Name Flight Arrival Cou...

-8 FlightArrivalCityld Id Flight Arrival City... Mo

-8, FlightArrivalCityMame Mame Flight Arrival City...

- u FlightPrice Price Flight Price Mo

- m FlightDiscountPercentage Percentage Flight Discount P... Mo

- foe FlightFinalPrice Price Flight Final Price FlightPrice *(1-AirlineDiscountPercent. ..

- @ Airlineld Id Airline Id fes

- & AirlineName Name Airline Name

- @ AirlineDiscountPercentage Percentage Airline Discount P...

- e FlightCapacity Numeric{4.0) Flight Capacity count{FlightSeatLocation, FlightSeat...

- o FlightSeatQty Mumeric(4.0) Flight Seat Qty count({FlightSeatChar)

EHE] seat Seat Seat

i @ FlightSeatld Id Flight Seat Id Mo
: 4 FlightSeatLocation Location Flight Seat Location Mo
¥ FlightseatChar SeatChar Flight Seat Char Mo

We see in this case that Seat is like a second level in the Flight transaction.

@] 4& Web Form |,.€'5 Win Form | Rules |'@ Events |@ Variables |@ Help | @ Documentati... | B Patterns

So, what is the difference between this 1 to many relation and the relation of 1 to many we

saw between Attractions and Providers?

GeneXus”

Why don’t we represent both cases the same way (with the same transaction design)?

Note that the existence of seats would have no sense if they were not in a flight. It is senseless
to consider a seat without it always relating to the flight it belongs ... However, an attraction
could not have a provider offering it and it could still exist on its own as such...

The other difference is that when we enter the data of a flight, we are also entering the data
relative to the flight’s seats (just as when we enter an invoice and the lines in it, we will be
entering all the information at once). However, the data relative to Suppliers and Attractions

do not necessarily have to be entered at the same time.

An entity like seats, whose existence only makes sense when represented in relation to
another entity (in this case flights) is called a weak entity.

We represent this type of weak 1 to N relation with a single two-level transaction, where the
weak entity is in the second level. As opposed to the 1 to N relation between Suppliers and
Attractions, where we created 2 transactions and in one we set the other’s primary key as the
foreign key.

G- Fight
2 Fightid
S, FightDepartureCountryld
S, FightDepartureCountryName:
S, FightDepartureCityld
S, FightDepartureCityName
S, FightarrivalCountryld
S, FightArrivaiCountryName
S, FightAnmvalGityld

EHE] Seat
¥ Fightseatid
;- FightSeatLocation
¢ FightSeatChar

1+to many 1+to many (weak)

e ————————————— GENEXUS

So far we saw relations of 1 to many, but this is not always the case we must represent from
reality.

Let’s suppose that the reality of the travel agency has changed:

Each supplier offers several tourist attractions (as we have seen so far), but each attraction
may be administered by DIFFERENT suppliers (instead of just 1 as we have had).

GeneXus”

So, the relation between Suppliers and Attractions is no longer a “1 to many” relation but
rather a “many to many” relation.

And how should we represent this in GeneXus?

GeneXus”

The solution is to use two transactions, one for each entity. Also, to one of them we add the
other as a second level. This is done upon considering how the data will be entered, either all
the tourist attractions for each supplier, or for each attraction all the suppliers that provide it.
In this case, the most logical thing to do is to enter the attractions provided by each supplier as
we enter the supplier.

We will do this in GeneXus...

We open the Attraction transaction and remove the Supplierld and SupplierName attributes
and save.

| ElFiight x | E Supplier x % Diagrams X 3 Disgram6* X | [Attraction x |
[Name Type Description Formula
E}-Enttracﬁon

- @ AttractionId Id Attraction Id

- j AttractionMame Mame Attraction Name

- @ Countryld 1d Country Id

- @ CountryMame MName Country Name

- @ Categoryld 1d Category Id

-- & CategoryMame Mame Category Mame

-4 AttractionPhoto Image Attraction Photo

- @ Cityld Id City Id

- @ CityMame Mame City Name

We now open the Supplier transaction, where we add a second level and add the attributes:
Attractionld, Attraction Name and AttractionPhoto. We will see that the second level remained
with the name Attraction.

Flight > Supplier x o= Diagramb X o= Diagramb * X Adtre

|’Name | Type | Description | Formula
E}- Supplier Supplier Supplier
- @ Supplierld Id Supplier Id
*__n Suppliertame Mame Supplier Mame
= SupplierAddress Address Supplier Address
E} Attraction Attraction Attraction
- Attractiond Id Attraction Id
J..-' AttractionMame Mame Attraction Name

iy AttractionPhoto Image Attraction Photo

We will now see how this relation turned out by creating a new diagram...File
...New...Diagram... and drag the Attraction and Supplier transactions to the diagram.

" Attraction @ e | Supplier @ |

i Attractionld ¥ Supplierld
AttractionMame Suppliertame
Countryld Supplierfddress
CountryMame [E] Adtraction
Categoryld ¥ Aftractionld
CategoryName AttractionMame
AttractionPhoto AttractionPhoto
Cityld
CityName

Now there is a double arrow at each end of the relation, indicating that the relation is a
“many” to “many” relation, meaning that one attraction is provided by several suppliers and
one supplier provides many attractions.

Let’s now see the tables that GeneXus will create base don the above design...

We see that there is an ATTRACTION table, a SUPPLIER table and a table called
SUPPLIERATTRACTION.

= Tables
= Airline
|- [Aftraction
= Category
E Country
E CountryCity
E Customer
= Flight
= FlightSeat

= Supplier

= Supplierfttraction

We now create a new diagram object and drag the three tables to the diagram....

i .

Adtrachon

P \

|

Supplier [
i ﬂ.ttrac:t?nnld ¥ Supplierld
AttractionMame SupplierName
Countryld Supplierfddress
Categoryld |
AttractionPhoto
Cityld .
.,
™,
E " [' 3

SupplierAttraction (%

¥ Supplierld

i Attractionld

We should note that in this case, GeneXus creates a table for each transaction that is part of
the relation of many to many (ATTRACTION and SUPPLIER), and it also creates a third table
called SUPPLIERATTRACTION, to establish the relation.

If we analyze the structure of this third table, we will see that only the attributes identifying
the other two tables are included.

So, every time that GeneXus establishes a relation of many to many, that relation will be
represented in the database by three tables, one for each entity that is included, and a third
one con the identifiers of the other two.

We can see that the many to many relation between Attraction and Supplier broke down into
two relations of one to many, using the SUPPLIERATTRACTION table to establish the relation
between the previous ones.

1 many

AIRLINE - FLIGHT
FLIGHT
1
j many
QEAT
many many
ATTRACTION - »QUPPLIER
GeneXus”

So, we have seen that we can represent different relations between actors from our reality
with transactions and their attributes.

