

GeneXus developers and/or testers need to do interface testing after the application

deployment, sometimes these regression tests need to be executed in many environments (i.e.

QA, pre-production, and others).

The UI tests make it possible to provide immediate feedback after each deployment, allowing

us to catch bugs and fix them quickly.

UI tests allows the creation of end-to-end tests: for example, if my application was Amazon, an

end-to-end test could be the login into the application, searching for an item, adding it to the

shopping cart, adding the delivery address, paying for the purchase, and logging out. These

tests verify the integration between different application modules.

So, these kinds of tests are valuable for integration tests and user acceptance tests.

These tests are not only ran after each deployment but also after GeneXus upgrade migration,

database new versions, and server changes.

In GeneXus, the User Interface objects will be tested with the Web UI tests. These objects will

be tested while the application is running in the browser, so, they need the application to be

deployed in order to execute the test.

UI testing approach enables the simulation of user interactions over the running application,

the goal is to implement automatic interface validations and include THEM? as regression

tests.

The strategy is to automate the most critical end-to-end flows of the application, which

means risky flows for the business. Also, automate flows where bugs appear

frequently and flows that should work well when releasing a new version to the

customer.

In the e-banking example application, a critical end-to-end flow is:

Log in to the application

Check the account balance

Do a transfer

Check the final balance

Logout

So, we are working on the same e-banking application. As you

remember, it manages accounts, transfers, and credit cards, and we

need to automate the most critical functions of our business that

would be included in the regression tests.

In this case the risk flow is an end-to-end test with the following

steps: login, perform a new transfer, and check the balances of the

accounts involved.

We will create a new Web UI test object, by which we can control the

browser, performing actions and adding user interface validations.

There is a wide set of different actions available.

To create the Web UI test object click on the Record Web UI Test

option

Fill the test name and click Create, in this case the object is called

“NewTransfer”. A new Web UI Test will be created.

When you select Create, the Chrome browser will be automatically

opened, in which you must write the application home page URL.

Also, the GXtest Recorder extension is automatically opened and

recording. GXtest Recorder is a Chrome extension that saves the

actions done by the user (dev or tester) over the application.

The user just executes the workflow over the application and GXtest

Recorder generates the GeneXus code to include quickly in the Web

UI test in the KB.

In this case I pasted the e-banking application URL, pressed Enter,

and started to execute the workflow to automate.

After recording the workflow, the actions will be saved by GXtest

Recorder like commands with html references. Note that the

commands are recorder with html references, that means that

references to controls are made by id, name, css and xpath.

Then, clicking copy to clipboard and going to the new object in GX

IDE, the GeneXus code of the Web UI test will be paste

automatically.

As you can see in the code, the Web UI test object has a driver

variable by which the actions are executed in the browser, in that

case, the application components are referenced by html.

Now, we have the Web UI test ready to execute in the GeneXus IDE

and pipeline.

For running this tests, we just to select the “Run Test(s)” option.

After execution, you can see information about execution date time,

speed and browser in the Test Result panel. Also, you can see the

command detail, you can visualize the expected versus the obtained

values for each test case.

It is a good practice to change the application home URL by

WebPanel.Link() function to execute this test in different

environments.

To have a higher level of abstraction of your recordings and create more robust tests,

we have developed the functionality of creating tests with references by control name.

Propiedades de la KB

It is possible recorded by control name references selecting the checkbox

“Control name”

In this recording, the GXtest Recorder saves the same actions as

commands, but instead of saving the element selectors by HTML, it saves

them by GeneXus Control Name selector.

You can see the controlName selector for each element in each recorded

action.

In GeneXus code, you can find the commands by control name references,

these are the commands “Click” and “Type” in this case. In the same

workflow, if some element doesn’t have a control name it is recorded by

HTML reference, like the last commands “ClickByCSS”.

After the execution of the test, you can see the result detail in the Tests

Results window.

