

Unit testing is a method by which individual units of source code are tested to

determine if they are fit for use.The goal of unit testing is to separate each part

of the program and test that the individual parts are working correctly.

GeneXus developers need to run and debug their procedures in some way after writing their

code and rules. Traditionally they test input/output using self-made Web Panels or UI to run it

using different input and evaluating outputs. All this effort can be reduced (and automated) by

using the unit test object by which the developers´s effort to validate their business logic is

reusable.

Unit tests make possible to provide immediate feedback to developers, even before they

commit a buggy change because each time a procedure changes and it is built, GeneXus can

run this tests automatically in development environment and provide feedback to the user if

that test is broken.

It gives an opportunity to detect bugs in GeneXus code without even creating an environment

and deploying the solution. Unit Testing helps to detect issues at an early stage of the

development process preventing lots of costs and bugs in the future without affecting any other

parts of the software.

Moreover, detecting and fixing bugs is easier when these are found on a unit of code rather

than on the whole system. Unit tests run very fast and can be shared through GeneXus

Server, but they must never be deployed to production.

It also provides the opportunity to make the code more robust, reliable, and stable.

In GeneXus, the procedures are the way to encapsulate business logic code and reutilize it on

different panels. For that reason, to test the business logic you must encapsulate it in

procedures. If you don’t have this development practice, you must refactor your application

and change the way you program.

Besides, part of the application logic is included in data providers and business components.

We can create tests to verify the behavior of these objects.

From GeneXus IDE it is possible to generate unit tests easily over these non-interface objects.

And also, it is possible to create standalone unit tests to verify the integration between different

processes.

The most weight of unit tests in the KB will be over the procedures, as they allow us to check

the core business logic behavior.

For every procedure of the KB logic, we will create a unit test that atomically verifies how does

it work. If it is necessary, we will create a unit test that calls for several procedures to test the

integration of procedures/functions.

Suppose you have a procedure called CheckBalanceForTransfer - it

has two input parameters (account number and transfer amount) and

an output parameter with a boolean variable of transfer success.

The procedure approves or rejects the transfer, depending on the

validity and balance of the account.

So, as a developer, instead of doing manual testing with an auxiliary

panel, button, and input fields to call the procedure, the developer

should create the unit test with the test cases. Let’s see how to easily

do it in GeneXus!

To create the unit test object we just click right over the procedure

tab, or in the KB explorer, and select the option “Create Unit Test”.

This option will automatically generate the test objects within a

module: the unit test object, the data provider in which we will define

the test cases and the SDT with the test cases structure.

In the example, you can see that the generated unit test template

iterates over the test cases collection

CheckBalanceForTransferUnitTestData, in which we just add the test

cases.

In each iteration, the unit test calls the procedure that we want to test

and verifies the expected values with assertion functions. Assertions

are mechanisms that defines whether tests pass or fail. There are

different assertion functions depending on the type of the parameters

they assert on (boolean, numeric, string).

Note that in this example the assertion was automatically generated

and it validates the output parameter of the procedure.

What remains is to add the test cases in the Data provider.

In this example: the test case 1, with account number 5, is from an

account without balance, so the transfer must be rejected. The test

case 2, is from a valid account with balance, so, the transfer must be

approved. Finally, the test case 3, with account number 8 is an

invalid account number, so, it must be rejected too.

To execute the test, right click over it and select “Run Test(s)” option.

A build process is performed and, if the build is successful, the test is

executed.

After the execution, you can see information about the result and

elapsed time in the Test Results panel. Also, for each test, you can

visualize the expected and obtained values for each assertion.

From the Tests Results panel, you can perform some actions like

“Run again”, “Run failed again” and “Export execution results as

HTML”.

In the Unit test execution details section, you can also visualize the

“Test coverage” percentage and “Set as expected” the obtained

values, if applies.

We will see the “Coverage” and “Set as expected” features later on.

Now that we know about the unit test concept, let’s see how to add

database validations.

Suppose that you have a procedure called DoTransfer. It has as

input parameters the SourceAccountNumber, TransferAmount and

TargetAccountNumber variables, and IsSuccess as output variable.

The procedure checks the account balance, if it is enough, it creates

the Transfer and updates the balances. Finally, it sets the variable

IsSuccess in True.

When GeneXus generates the unit test, it automatically generates a

template with the output parameter assertion. The developer should

add in genexus code the database validations in the unit test.

Remember that the unit test is a special GeneXus procedure, so, you

can add any code that you need to do your test more robust.

In this example, we add Balance validations over the Account table

after exercising the procedure DoTransfer.

We could add more validations, for example if a new transfer was

created in the Transfer table.

Finally, we set the test cases in the DoTransferDataProvider with a

rejected and a successful transfer.

Once is all set, we run the unit test.

In the Tests Results panel, you can see all executed assertions. For

each test case, there is the output parameter assertion and then the

Balance validations over the Account table. Note that in the Info

column is shown the third parameter of the assertions, usually used

to identify the assertion and as a context for future modifications.

Also, note that tests are placed in the “Tests” module, and each proc

test is placed in a folder with the name of procedures.

As we commented previously, with the unit tests is also possible to

test data providers (for example if the data provider gets data from an

external service or procedure) and business components. And it is

possible/necessary to create standalone unit tests to verify the

integration between different functions.

