Dynamic Transactions

GeneXus™ 15

Dynamic Transactions

Data Provider True

Used to Retrieve data \,\:J

* In the DP, we must specify which data we want to retrieve...:

o when the Transaction form is executed.

o when using the attributes.

* A Dynamic Transaction can be referenced as Base Transaction

Dynamic Transactions

Use case #1 : Data union

CreditNote

1d ¥ Credithoteld id
Date © CreditNoteDate Date
d 2 Saleld Id
Name ¥ SaleDate Date
1d ¥ SaleAmount Price
Name ¥ Showld Ig Movement_DataProvider XI
¥ ShowName
Price 2 Sectorld Source | Rules | Variables | Help | Documentation
Name
¥ SectorName 1 MovementCollection
Price ; 2
¥ SectorPrice 2Eq
3 Movement from Sale
4 { [
—] MovementType = "S"
=& Movement 6 MovementId = Saleld
? MovementType Character(1) 3 MovementDate = SaleDate
? Movementld Id 8 MovementAmount = SaleAmount
p MovementDate Date 9 MovementCurrencyName = CurrencyName
10
* MovementAmount Price } .
11 Movement from CreditNote
® MovementCurrencyName Name 12 { CE—
13 MovementType = “C"
Data 14 MovementId = CreditNoteld
) 18 MovementDate = CreditNoteDate
Data Provider True 16 MovementAmount = SaleAmount
n 17 MovementCurrencyName = CurrencyName
Used to Retrieve data 18 }
19/-})

Dynamic Transactions

Use case #1 : Data union

9 MovementType Character(1)
¥ Movementid d Movements 09/27/17
P MovementDate Date
* MovementAmount Price type " Amount Currency
® MovementCurrencyName Name
s 1 200 US Dokar
s 2 3500 Uruguayan Peso
S 3 1%0 US Ootar
c 1 200 US Dotar:

[_' PrintTodayMovements X

“ayout Rules | Conditions | Variables | Help | Documentation

v

Print Title

1

2) For each Movement order (MovementType), MovementDate

3 where MovementDate=iToda

4 Print Movement [o) & Movement

S Endfor e e

Dynamic Transactions

Use case #1 : Data union

Y MovementType Character(1) Data Provider True

¥ Movementid Id

O MovementDate Date Used to Retrieve data
& MovementAmount Price

® MovementCurrencyName Name

4] Apply this pattern on save ¢ .

% MIDE FILTERS

Movements

MOVEMENT TYPE

MOVEMENT AMOUNT

MOVEMENT CURRENCY NAI

Dynamic Transactions

Use case #1 : Data union

? MovementType Character(1) Data Provider True

? Movementld 1d

© MovementDate Date Used to Retrieve data
* MovementAmount Price

* MovementCurrencyName Name

Androdd Emulator - GeneXus-AP124-X36:5554

E:' Work With for Smart Device [%4 B 120

Work With Movement Q ¥ +

Apply this pattern on save
%z| Level (Movement)
5 List
& Detail
[Section (General)

Dynamic Transactions

Use case #2 : Modeling a reality

L
PROMO

50%

v" Shows to be presented within 5 days or less

v" SectorAvailableQuantity >= 100

\’.

| % web Form | % Win Form | Rules

Name Type ¥ Promotion_DataProvider X
- —xf.Promobon Promotion
¥ Promotionshowld id
¥ PromotionSectorld 1d

P PromotionShowName Name

¢ PromotionDate Date

* PromotionPrice Price
Name

Name

Rules | Vaniables | Help | Documentation

ProsotionCollection
2e{
Promotion from Show.Sector
4 where (ShowDate-ServerDate()) <= 5 and (ShowDate-ServerDate()) >=@
where SectorAvailableQuantity >=100

* PromotionCurrencyName
* PromotionVenueName

PromotionShowld = Showld
PromotionSectorld = Sectorld
PromotionShowName = Showhame
PromotionDate = ShowDate
11 PromotionPrice = SectorPrice/2
Data Provider True ‘ 12 PromotionCurrencyName = CurrencyName
1 PromotionVenueName = VenueName
Used to Retrieve data 14 }

Dynamic Transactions

Use case #2 : Modeling a reality

L !
“TPROMO| 50% :

L —

o o o

P Date Show Id Show Name Promotion Sectorld Sector Name Promotion Price Promotion Currency Name | Promotion Venue Name
PromotionDate PromotionShowid PromotionShowName PromotionSectord N Py Price 2 urrencyName PromotionVenueName

Dynamic Transactions

Use case #2 : Modeling a reality

—_umn
PROMO, 50%

LR LS
Date Show Id Show Name Promotion Sectorid Sector Name Promotion Venue Name Price y Name

100317 1 Madonna in Concent 1 Orchestra Platinum Madison Square Garden 100 US Dokar

100317 1 Maconna in Concert 2 Orchestra Gold Madison Square Garden 75 US Dolar

1000617 2 David Besbal - Tour 2017 1 Amenca Rosirum Estadio Centenaro 3500 Uruguayan Peso

Dynamic Transactions

Use case #3 : Solving statistics

o Foragiven period, to know the number of sales per day.
o For agiven date, to know the number of sales.

o Best day of the year.

B statistics X 5 Statistics_DataProvider X
E, Web... | % Win F... | Rules | Eve || Rules | Variables | Help | Documentation
Name Type ktatistics(ollection
- B 2B .
T 7 3 3 Statistics from Sale unique SaleDate
9 statisticsDate Date ? {
{P statisticsSalesQuantity ~ Numeric(10.0) StatisticsDate = SaleDate
StatisticsSalesQuantity = Count(SaleAmount)

D < O U B

Data Provider True

Used to Retrieve data

Dynamic Transactions

Use case #3 : Solving statistics

o For agiven period, to know the number of sales per day

For each Statistics order StatisticsDate
where StatisticsDate >= &Initi
where StatisticsDate <= &FinalDate
Print Line [5] == Line

Erdfor — T —

alDate

oW N e

o For agiven date, to know the number of sales.

For each Statistics order StatisticsDate ﬂ
where StatisticsDate = &Today ~
Print Line [5] = line

BT | e e A ot Srara e

oW N e

Dynamic Transactions

Use case #3 : Solving statistics

o Best day of the year.

175 For each Statistics order (StatisticsSalesQuantity)
25 where StatisticsDate.Year() = &Today.Year()

3 Print Line [0 W& Line

43 exit

51" Endfor T StatisticsDate © T StatisticsSales Quanty

&BestDate = Max (StatisticsSalesQuantity, StatisticsDate.Year()=&Today.Year(),b, StatisticsDate)

Use case #4 : Making Evolution Easier

Person

{
Personld*
PersonName
GenderId
GenderName

}

Gender
{
GenderId*
GenderName
GenderMembers = count(PersonName)

}

WeightLog

{
Personld*
WeightLogDate*
WeightLogKilos

}

The objective of use case #4 is to show how defining dynamic transactions helps
us to easily evolve.

We have a GeneXus Knowledge Base for tracking body weight, with the
transactions shown on the slide.

« Person: Allows registering people and for each of them, their gender.

* Gender: Allows registering genders and has a defined formula to know how
many people are registered in each gender.

+ WeightLog: Allows registering, for each person, in each data, his/her weight.

Now suppose that, with the system already up and running, the developer is
asked to track not only the weights but also other body measurements (like chest
or waist circumference).

The database model needs to be redesigned in order to store this new data. Of
course, it's possible to create a new Transaction object for each new
measurement to be tracked, but a better (and more extensible) design is to have
just one Transaction for any kind of measurements, as the following slide shows.

Use case #4 : Making Evolution Easier

Person Measure
{ { Data Provider True
Personld* Measureld* "
[T evive aoa
PersonName MeasureName
Genderld } 53 Measure_DataProvider X
GenderName Rules | Variables | Help | Documentation
} Measurelog Measurecollection
28 {
{ Measure
Gender PersonId* 4 {
< Measureld = 1
{ Measureld MeasureName = ‘Weight'
GenderId* MeasurelLogDate* .S
GenderName MeasurelogValue) ¢
1 Measureld = 2
GenderMembers = count(PersonName) } 11 »-::::.:u,., e ‘Chest’
} l': verghtLog_DataProvider * xI 1 //othe |
14/
Rules | Varisbles Help | Documentation
WeightLog 1| weightiogCollection
2B
(weightlog from Measurelog
Personld* - where Measureldel
WeightlLogDate* ! (Personld = Personld
WeightLogKilos MeightLogDate = MeasureLogDate
Weightiogkilos = Measurelogvalue
} Data Provider True
Used to Retrieve data

As you can see, we have defined two new transactions.

* Measure: Allows registering measurements (for example, “Weight®’, “Chest”,
etc.) appropriately.

+ MeasurelLog: Allows registering, for each person, on each data, for a specific
measurement, the value measured.

Note that the Measure transaction has been defined as dynamic (take a look at its
properties). You should also note that in the associated Data Provider, the data
assigned to the Measure attributes is not obtained from tables, but rather it's fixed
values. This is because the developer does not want users to edit, delete, or enter
new measurements. The developer has assigned specific values. A physical table
associated with the Measure transaction will not be created, and note that the
Measureld attribute is used as a foreign key in the MeasureLog transaction.

The WeightLog transaction is not needed anymore since all measurements will be
stored in the physical table associated with the new MeasureLog transaction.
However, the application code still references it as base transaction in many
places, such as For Each statements. So, instead of removing the WeightLog
transaction and having to modify wherever it is referenced, it's a good idea to
change it into a dynamic Transaction.

The developer must not forget that if he defines a transaction as Dynamic,
the associated physical tables will no longer exist. So, before proceeding
with this proposal, he/she has to move the data (in this case, weights from
WeightLog to MeassureLog table).

Use case #4 : Making Evolution Easier

Event Insert(&Messages)

&Measurelog = new()
MeasureLog &Measurelog.Personld = Personld
{ &Measurelog.Measureld -1
&Measurelog.MeasurelogDate = WeightlLogDate
Personld* Measurelog.MeasurelogValue = WeightlogKilos
Measureld* 8Measurelog.Insert()
SMessages = 8Measurelog.GetMessages()
MeasurelogDate* [¢ gt
MeasurelogValue
} Event Update(8Messages)
&Measurelog.Load(Personld, 1, WeightLogDate)
&Measurelog.Measurelogvalue = WeightlogKilos
Weightl.og 8Measurelog.Update()
{] SMessages = &Measurelog.GetMessages()
Endevent
Personld*
WeightLogDate* I 5 WeightLog_DataProvider * >‘I Event Delete(&Messages)
WeightLOgKllOS Rules | Variables | Help | Documentatior &Heasurech.Load(PersonId, 1, WeightlogDate)
&Measurelog.Delete()
} 1} WeightlogCollection essages = &Measurelog.GetMessages()
{ Endevent

weightlog from Measurelog

where Measureldsl
{

Personld = Personld
Used to Retrieve data WeightlogDate = MeasurelLogDate

8 WeightlogKilos = MeasurelogValue
O e

Data Provider True

By default, the form of dynamic Transactions shows data with read-only behavior.

Now, let’s suppose that users are used to executing the WeightLog Transaction, and they
ask us to still be able to edit it through its form. They also use the MeasureLog transaction,
but they want to use both.

It's possible to complete these request, since transactions offer another property under the
“‘Data” group. Its name is “Update Policy” and its possible values are: Read Only /
Updatable.

So, by setting the WeightLog Transaction “Update Policy” property = Updatable, its form
will allow the users to edit the data; but in which physical table will the updates be
stored?

The developer has to codify the Insert, Update and Delete events in the WeightLog
Transaction Events section, in order to specify his intention. In this example, the logical
solution is to store the data in the MeasureLog physical table, using the Business
Component concept as shown.

Note that after applying the Insert(), Update() and Delete() methods respectively to the
&MeasurelLog business component variable, the developer obtains the messages and/or
errors triggered (in the &Messages collection variable). By declaring the &Messages
variable as a parameter in each event (as shown), those messages are displayed in
the WeightLog Dynamic Transaction in a transparent way, like its own messages.

In this way, the WeightLog Dynamic Transaction can be used in exactly the same way as

before and no changes are necessary to dependent programs. This also applies if the
transaction is used as a Business Component, because it is a Dynamic Transaction that allows
updates and the corresponding events to store the data are codified.

Dynamic Transactions

ADVANTAGES
Descr'\be rea\\t:\es and .
‘\ntem'\ons flexily mys s
Ore eaSin OIVe

Simplify developing iziﬁgm o

