
PuestaAlDia-DesarrollandoConGeneXus15-PDFs/01_IntroductionAndBaseTransaction.pdf


































PuestaAlDia-DesarrollandoConGeneXus15-PDFs/02-DataPopulationAssociatedWithTransactions.pdf


















Besides being automatically executed whenever GeneXus
detects it has to run it, the the Country_DataProvider can also
be explicitly executed by the developer, as shown.







PuestaAlDia-DesarrollandoConGeneXus15-PDFs/03-MethodsForBusinessComponents.pdf










































































If the developer needs to delete, for a certain &ShowId, the line whose identifier


line =&SectorId, he/she can solve it with the showed code.







PuestaAlDia-DesarrollandoConGeneXus15-PDFs/04-Dynamic Transactions.pdf


















































The objective of use case #4 is to show how defining dynamic transactions helps


us to easily evolve.


We have a GeneXus Knowledge Base for tracking body weight, with the


transactions shown on the slide.


• Person: Allows registering people and for each of them, their gender.


• Gender: Allows registering genders and has a defined formula to know how


many people are registered in each gender.


• WeightLog: Allows registering, for each person, in each data, his/her weight.


Now suppose that, with the system already up and running, the developer is


asked to track not only the weights but also other body measurements (like chest


or waist circumference).


The database model needs to be redesigned in order to store this new data. Of


course, it's possible to create a new Transaction object for each new


measurement to be tracked, but a better (and more extensible) design is to have


just one Transaction for any kind of measurements, as the following slide shows.







As you can see, we have defined two new transactions.


• Measure: Allows registering measurements (for example, “Weight”, “Chest”,


etc.) appropriately.


• MeasureLog: Allows registering, for each person, on each data, for a specific


measurement, the value measured.


Note that the Measure transaction has been defined as dynamic (take a look at its


properties). You should also note that in the associated Data Provider, the data


assigned to the Measure attributes is not obtained from tables, but rather it’s fixed


values. This is because the developer does not want users to edit, delete, or enter


new measurements. The developer has assigned specific values. A physical table


associated with the Measure transaction will not be created, and note that the


MeasureId attribute is used as a foreign key in the MeasureLog transaction.


The WeightLog transaction is not needed anymore since all measurements will be


stored in the physical table associated with the new MeasureLog transaction.


However, the application code still references it as base transaction in many


places, such as For Each statements. So, instead of removing the WeightLog


transaction and having to modify wherever it is referenced, it's a good idea to


change it into a dynamic Transaction.


The developer must not forget that if he defines a transaction as Dynamic,


the associated physical tables will no longer exist. So, before proceeding


with this proposal, he/she has to move the data (in this case, weights from


WeightLog to MeassureLog table).







By default, the form of dynamic Transactions shows data with read-only behavior.


Now, let’s suppose that users are used to executing the WeightLog Transaction, and they


ask us to still be able to edit it through its form. They also use the MeasureLog transaction,


but they want to use both.


It’s possible to complete these request, since transactions offer another property under the


“Data” group. Its name is “Update Policy” and its possible values are: Read Only /


Updatable.


So, by setting the WeightLog Transaction “Update Policy” property = Updatable, its form


will allow the users to edit the data; but in which physical table will the updates be


stored?


The developer has to codify the Insert, Update and Delete events in the WeightLog


Transaction Events section, in order to specify his intention. In this example, the logical


solution is to store the data in the MeasureLog physical table, using the Business


Component concept as shown.


Note that after applying the Insert(), Update() and Delete() methods respectively to the


&MeasureLog business component variable, the developer obtains the messages and/or


errors triggered (in the &Messages collection variable). By declaring the &Messages


variable as a parameter in each event (as shown), those messages are displayed in


the WeightLog Dynamic Transaction in a transparent way, like its own messages.


In this way, the WeightLog Dynamic Transaction can be used in exactly the same way as







before and no changes are necessary to dependent programs. This also applies if the


transaction is used as a Business Component, because it is a Dynamic Transaction that allows


updates and the corresponding events to store the data are codified.











PuestaAlDia-DesarrollandoConGeneXus15-PDFs/05-Miscellaneous.pdf


































































PuestaAlDia-DesarrollandoConGeneXus15-PDFs/06-BestPracticesWithGeneXusServer15.pdf


























































https://wiki.genexus.com/commwiki/servlet/wiki?31775,ChangeSets%20in%20Ge


neXus%20Server























https://wiki.genexus.com/commwiki/servlet/wiki?31746,Partial%20Commit%20to


%20GeneXus%20Server































https://wiki.genexus.com/commwiki/servlet/wiki?26485,GeneXus%20Server%20K


B%20Activity







https://wiki.genexus.com/commwiki/servlet/wiki?31949,Team%20Development%2


0History%20dialog















https://wiki.genexus.com/commwiki/servlet/wiki?31190,Blame+in+GeneXus+Serv


er,































https://wiki.genexus.com/commwiki/servlet/wiki?19747,Manage+versions+with+G


eneXus+Server,



















https://wiki.genexus.com/commwiki/servlet/wiki?20912,Bring%20Changes



























































https://wiki.GeneXus.com/commwiki/servlet/wiki?22086,HowTo%3A+Automating+


Builds+with+GXserver+and+CruiseControl.NET,



https://wiki.genexus.com/commwiki/servlet/wiki?22086,HowTo:+Automating+Builds+with+GXserver+and+CruiseControl.NET





PuestaAlDia-DesarrollandoConGeneXus15-PDFs/07-Testing.pdf


































































KISS – Keep it Simple


YAGNI – You aren’t gonna need it














































































