
























The objective of use case #4 is to show how defining dynamic transactions helps

us to easily evolve.

We have a GeneXus Knowledge Base for tracking body weight, with the

transactions shown on the slide.

• Person: Allows registering people and for each of them, their gender.

• Gender: Allows registering genders and has a defined formula to know how

many people are registered in each gender.

• WeightLog: Allows registering, for each person, in each data, his/her weight.

Now suppose that, with the system already up and running, the developer is

asked to track not only the weights but also other body measurements (like chest

or waist circumference).

The database model needs to be redesigned in order to store this new data. Of

course, it's possible to create a new Transaction object for each new

measurement to be tracked, but a better (and more extensible) design is to have

just one Transaction for any kind of measurements, as the following slide shows.



As you can see, we have defined two new transactions.

• Measure: Allows registering measurements (for example, “Weight”, “Chest”,

etc.) appropriately.

• MeasureLog: Allows registering, for each person, on each data, for a specific

measurement, the value measured.

Note that the Measure transaction has been defined as dynamic (take a look at its

properties). You should also note that in the associated Data Provider, the data

assigned to the Measure attributes is not obtained from tables, but rather it’s fixed

values. This is because the developer does not want users to edit, delete, or enter

new measurements. The developer has assigned specific values. A physical table

associated with the Measure transaction will not be created, and note that the

MeasureId attribute is used as a foreign key in the MeasureLog transaction.

The WeightLog transaction is not needed anymore since all measurements will be

stored in the physical table associated with the new MeasureLog transaction.

However, the application code still references it as base transaction in many

places, such as For Each statements. So, instead of removing the WeightLog

transaction and having to modify wherever it is referenced, it's a good idea to

change it into a dynamic Transaction.

The developer must not forget that if he defines a transaction as Dynamic,

the associated physical tables will no longer exist. So, before proceeding

with this proposal, he/she has to move the data (in this case, weights from

WeightLog to MeassureLog table).



By default, the form of dynamic Transactions shows data with read-only behavior.

Now, let’s suppose that users are used to executing the WeightLog Transaction, and they

ask us to still be able to edit it through its form. They also use the MeasureLog transaction,

but they want to use both.

It’s possible to complete these request, since transactions offer another property under the

“Data” group. Its name is “Update Policy” and its possible values are: Read Only /

Updatable.

So, by setting the WeightLog Transaction “Update Policy” property = Updatable, its form

will allow the users to edit the data; but in which physical table will the updates be

stored?

The developer has to codify the Insert, Update and Delete events in the WeightLog

Transaction Events section, in order to specify his intention. In this example, the logical

solution is to store the data in the MeasureLog physical table, using the Business

Component concept as shown.

Note that after applying the Insert(), Update() and Delete() methods respectively to the

&MeasureLog business component variable, the developer obtains the messages and/or

errors triggered (in the &Messages collection variable). By declaring the &Messages

variable as a parameter in each event (as shown), those messages are displayed in

the WeightLog Dynamic Transaction in a transparent way, like its own messages.

In this way, the WeightLog Dynamic Transaction can be used in exactly the same way as



before and no changes are necessary to dependent programs. This also applies if the

transaction is used as a Business Component, because it is a Dynamic Transaction that allows

updates and the corresponding events to store the data are codified.




