
1

2

It is common for Smart Device applications to show some transition effects as we move
from one screen to the next:

In GeneXus we will have several values available shown on screen. Some of them are: Curl
Up (and Curl Down) (only for iOS), Slide Up (and Slide Down), Push Up (and Push Down),
Fade, None, etc.

Note that each effect has an opposite, except for Fade. Further ahead we will see that
opposites are used in a predetermined manner. However, if we preserve consistency, we
may combine them as desired.

When we use a value that is supported only for iOS, then the default value will be used in
Android. That default value in Android may vary according to the Manufacturer and to the
version of the Operating System.

3

In GeneXus, we may specify these transition effects in two different locations.

We may do it in a static manner in design time in the Theme of the Form class or any of its
subclasses using the Enter Effect and Exit Effect properties; or we may do it in runtime, in a
programmatic manner, with the configuration of the Enter and Exit Effect properties of
CallOptions before calling an object.

4

We will see this in GeneXus.

5

First we will see how this application is viewed. In the emulator we go to Countries.
Note the effect, where just the screens appear and there isn’t a marked effect. This is the
default value , at least in the emulator, remember that the in Android, the default value
may vary.

We go to the theme, Gx28Android4, and in the Form class we add a class that we will call
FormPushUp and we will set up the Enter Effect property. It is in the default value. Note all
the values we have available. Like we mentioned before, we will use PushUp.

Note that Exit Effect takes the opposite value, Push Down in this case. We could change it,
but we will leave the default value.
We will record the Theme.

6

Now we will open, for example, WorkWithDevicesSpeaker, so we go to the List.
In Main Table we will change the associated class, the Form Class, and instead of Form we
will use FormPushUp.
We record it, though it was not necessary we are using Live Editing, we will see it directly.

We go to Speakers and note the PushUp effect. We access again. The content comes from
below and pushes up. Let’s do it again.
Now we can try with some other effect that is more noticeable. For example, we select
PushRight, and change to PushLeft Exit Effect.
We go to Countries, now Speakers, and note that here we have the effect a little more
evident, and the Push Left as we exit.

7

We will now see how we would go about doing this in a programmatic manner. We go to
EventDay and to WorkWithDevicesCountry, the event.

And here we copy the name of the WorkWithDevicesCountry object directly. We paste and
enter with dot (.) to properties and methods. We select the CallOptions property, dot (.)
again, EnterEffect just the same, and here we will use an enumerated domain called Effect.
If we press dot (.), we will have all the options available, all those we already saw. We will
go for Fade, for example.

We could do the same with Exit Effect, we paste the name of the object, CallOptions dot
ExitEffect, in the same way, and again the (Effect) enumerated domain, dot and we will
select a different one, like Push Left.

In this manner, we could configure it in a programmatic manner before the call (to the
object) takes place.
And this is the end of this subject.

8

9

