

Chatbots

September 2019

Copyright © GeneXus S.A. 1988-2019.

All rights reserved. This document may not be reproduced by any means without the express permission of

GeneXus S.A. The information contained herein is intended for personal use only.

Registered Trademarks:

GeneXus is a trademark or registered trademark of GeneXus S.A. All other trademarks mentioned herein are

the property of their respective owners.

2

OBJECTIVE

Welcome to the chatbots workshop!

Here we will see the power of the chatbots generator introduced in GeneXus 16.

We'll create a chatbot that answers questions at a technology and business

conference.

Chatbots generated with GeneXus run on both Web and Mobile.

SOME PRIOR ADJUSTMENTS

Lab requirements:

GeneXus Version:

GeneXus Beta.

NLP Provider:

In this lab, we’ll use Watson as Natural Language Processing (NLP) Provider. We’ll

skip the configuration of the NLP provider account because it is ready beforehand

for the lab.

Knowledge Base:

The knowledge base is located at

https://samples.genexusserver.com/v16/versions.aspx?CourseGX29Chatbot,

You have to do a checkout of the InitialState version.

Running the workshop app:

You can run it on the web and on a mobile device.

3

The web object that acts as entry point to the chatbot is the web panel called

RUDICourseGX29ChatbotWebUI. Running this object in each test cycle is enough.

The entry point SD object is RUDICourseGX29ChatbotSDUI.

To run the mobile app, we recommend using your own device. The Annex: How to

run the app on your device (below in this document), provides configuration

instructions.

GETTING TO KNOW CHATBOTS IN GENEXUS

First, let's run the following steps to interact with the chatbot.

The chatbot in your KB is called RUDICourseGX29 and has not yet been

synchronized with the Provider.

In the object RUDICourseGX29 of the parent node “Conversational Flows

Instance,” set in API Key property the value provided with the lab material. The

Authentication Type property must be “IAM Authentication,” and the Region must

be “Dallas.”

The workspace ID is automatically assigned.

4

After saving the changes (the same happens by right-clicking on the object

RUDICourseGX29, and selecting the Synchronize Chatbot option), a metadata file

is generated that impacts the NLP provider, to generate a dialogue with its

intentions and entities.(1)

Given a user's intention, different objects or topics can be distinguished

within that intention, which we formally call Entities.

Entities are stored in the NLP provider, with their possible values and synonyms.

To create a chatbot, you need to model its behavior (define intentions, entities)

and the response shown to the user for each of those intentions.

NOTE: THE CHATBOTS GENERATOR WORKS AS A PATTERN. FROM THE MODEL, THE PATTERN

AUTOMATICALLY GENERATES ALL THE OBJECTS NECESSARY TO IMPLEMENT THE CONVERSATION

BETWEEN THE USER AND THE NLP PROVIDER.

We’ve already understood the main concepts, and described the Chatbot

Generator. So, let’s start building!

THE CHATBOT IN ACTION

Through our chatbot, users can:

● Access Frequently Asked Questions (for example: WIFI password)

● Know where some services are located

● Obtain speakers’ information

Right-click on the object RUDICourseGX29 (Conversational Flows object) and then

on Generate ChatBot.

5

Note: The “Generate Chatbot” option makes the objects that will be generated

from our instance (RUDILabGX29) to be calculated and imported into the KB.

The following message may appear, indicating that the chatbots generator

resources will be updated (if not already up-to-date).

Run a Rebuild all.

The Create DB action will be requested. Note that there are two tables called

GXChatMessage and GXChatUser, which are used by the chatbot.

INITIALIZATION

6

The entities have been created in the NLP provider, but their values must be

initialized.

We’ll be working with the following entities:

● Floors

● Rooms

● Speakers

The values will be loaded in the NLP provider through an API provided by the

chatbots module.

Open the BatchEntities object to get to know the method used to upload values

and entities to Watson (“Chatbot.SendEntityValues”).

Run the BatchEntities procedure (right-click and select Run from the tab).

This process trains the system, so although the request to the NLP provider

immediately returns an HTTP Status 200, it may take a few minutes to complete

the training process.

The following will be displayed in the GeneXus output:

Floors: [{"Id":"","Type":2,"Description":"200 "}]

Rooms: [{"Id":"","Type":2,"Description":"200 "}]

Speakers: [{"Id":"","Type":2,"Description":"200 "}]

STARTING TO BUILD THE CHATBOT

Note some interesting flows:

1. GREETING

First of all, let's look at the simplest flow, which is the greeting (“Opening” flow).

This flow may not have any User Input (but in this case we want to ask the user's

name here, so that the chatbot is more friendly), and return the greeting.

Note the User Input “UserName” that has the property Clean Context Value =

FALSE. This means that the user's name will be saved in the context (2) (an essential

tool in a chatbot so that the user doesn’t have to repeat information he/she has

7

already provided).

Note the answer as well. It’s a Message node of text type where

an answer is provided to the user, instantiating his name.

8

How does the NLP Provider identifies the user’s intention, which in this

case is a greeting?

It does it based on the training given to the flow, using sample messages

(called “Trigger Messages” in GeneXus).

You can see them by clicking on the “Opening” node of the flow, in the

property Trigger Messages.

At runtime, you'll see something like this:

9

Now build a similar flow where the user can find out who RUDI is.

To do so, follow the steps below:

● Create a new Flow called “AboutRudi.” Right-click on the node

Conversational Flows Instance and then on Add - Flow.

10

● Add Trigger Messages (those you consider necessary; in a real

situation, the more complete and high-quality the training, the better

the identification of the user's intention will be).

11

● To add replies, right-click on the Response node, and add a Message.

There you can add all the answers you want. The answer given to the

user will be random, and it is precisely what makes the UX more

“natural.”

12

There are several flows of the same style that will be included in the chatbot, for

example, knowing the WIFI password, knowing what RUDI talks about, etc.

Let's see then how our chatbot responds!

13

2. ACCESS SERVICES

We will make a flow where the user will be able to ask about a service, for

example, the restroom. To give him the answer, he will be asked the floor where

he is located.

● Create a flow called “ServiceLocationBathRoomFloor.”

14

● In the Trigger Messages property, configure an example (or as many as you

want) for triggering this intention; for instance: “bathroom floor.”

How is the answer implemented?

When the user finishes entering the requested data (in this case, the floor), the given object

is executed in the “Conversational Object” property.

● In the “Conversational Object” property, configure the

“ServiceLocationBathRoom” procedure (it’s a proc stored in the KB); given

the floor where the user is located, it returns the nearest restroom.

Note that when you set up this property, a User Input (“SearchFloor”) and a

Response Parameter (“ServiceData”) are automatically assigned. These

match the input and output parameters of the proc

“ServiceLocationBathRoom,” respectively.

The User Input “SearchFloor” is where the user indicates the floor where he is in.

This User Input has Match with Entity = TRUE, and the entity is Floors.

What does Match with Entity mean?

That a check will be made so that the user doesn’t enter data that is not within the

values (and their synonyms) of this entity defined in the NLP Provider. It's like an

“integrity check” against the Provider.

You can open the “EntityFloors” object where we load the values of the “Floors”

entity in the Provider (floors and possible synonyms) to clarify what data is in the

NLP Provider.

15

That is, if the user enters a floor that is not within the values of the entity, the

Provider shows the error, and gives feedback to the user with the message

indicated in the property On Error Messages (E.g. “I didn't understand what you

meant by '&GXUserInput', but there are restrooms on every floor.)

● The only thing left is to add a Message so that it responds to the user when

he indicates a valid floor. What will be answered is the output variable of our

Conversational Object (&ServiceData).

16

Right-click on the “Response” node, click on “Add message,” and add

&ServiceData in the Messages property of the Message node.

That’s all; you can test it at runtime:

17

3. SEE A SPEAKER’S DETAILS.

This flow (“DetailFromSpeaker”) is intended to graphically show (without using

text) the speaker’s details. Therefore, it has a User Input that is the speaker’s

name. If the speaker is mentioned in the user’s initial message, it is not requested.

Note that the speaker has the property Match with Entity = TRUE, and

Entity=Speakers.

18

In this example, the speaker’s information will be displayed in a panel (Web or

Mobile), as appropriate.

The speaker’s information is obtained using a Data Provider, which

is invoked from the panels that will be used to show the result of

the user’s query.

The web object that shows the result is SpeakerDPComponent, and for SD

it is SpeakerDPComponentSD. You can open them and see the call to the Data

Provider which given a speaker’s name, return his details.

Let’s see the flow configuration:

The panels mentioned before, where the speaker’s details will be displayed

are configured in the Message node, which in this case has the Action property

set to Component view. The SD and Web panels are configured in the

19

SD Component and Web Component properties, respectively.

Let’s try it at runtime on the web!

20

And on a mobile:

21

We’ve seen some concepts about how to build a chatbot, but there is a lot

more! You can read the documentation provided below.

Thank you for participating!

22

ANNEX: HOW TO RUN THE APP ON YOUR DEVICE

In this workshop you can use an Android or iOS device.

You must obtain the public IP of the machine (click here) and set the properties:

● Web Root (of the C# Generator)

Change “localhost” for the public IP of your machine.

● URL Services (Smart Devices)

Change “localhost” for the public IP of your machine.

https://www.whatismyip.com/what-is-my-public-ip-address/

23

The object RUDICourseGX29ChatbotSDUI (the main SD panel) is set as

Startup Object, so you can scan its QR Code to install the app on your

Android device.

For iOS, you will need to have previously installed the app “GeneXus 16 KB

Navigator” (KBN) which can be downloaded from the Apple Store.

Then you can install the app by scanning the QR code,

QR Codes are available through the GeneXus menu option View -> Show QR

Codes. You should see a screen similar to the one below:

24

DOCUMENTATION

Chatbots in GeneXus

Chatbot Generator

Chatbots Architecture

How to build a Chatbot using GeneXus

Chatbots Channels API

Chatbot Generator Try Live

REFERENCES

(1) For example, given the intention to “Obtain a speaker’s details,” an entity of

that intention would be “Speakers,” and the value of that entity, for example,

could be “Gaston Milano.”

https://wiki.genexus.com/commwiki/servlet/wiki?38520,Toc:Chatbots+in+GeneXus,
https://wiki.genexus.com/commwiki/servlet/wiki?37102,Chatbot+generator,
https://wiki.genexus.com/commwiki/servlet/wiki?38522,Chatbots+architecture,
https://wiki.genexus.com/commwiki/servlet/wiki?37076,HowTo:+Build+a+chatbot+using+GeneXus,
https://wiki.genexus.com/commwiki/servlet/wiki?44072,Chatbots+Channels+API,
https://wiki.genexus.com/commwiki/servlet/wiki?40098,Chatbot+generator+Try+Live,

25

So, a group of several values is known as an entity. One or more of them will be

instantiated in the query.

(2) Context is essential in a chatbot. It is the status of the conversation, and is

maintained so as not to have to ask the user for information more than once. In a

GeneXus chatbot, all variables that are User Inputs are part of the context. Using

the property Clean Context value, you can clear the value of the context variable.

The context can be managed through the Context API.

https://wiki.genexus.com/commwiki/servlet/wiki?41364,HowTo:+Manage+the+Context+of+the+conversation+through+the+Chatbot+API,

