More about the For Each Command

GeneXus 16

Base table

For each Command/Base Table GeneXus

Review: Base table and extended table of a For each command
~ e | Gy R |
' — Basetable : “« >
| [T Attractionid | ¢ Categoryld I
. ' EfractionName CategoryName |
Print Title . Corya
= 1 Categoryld I
For each| Attraction : &! |
o = ityld
print Attractions i v "
Endfor : v |
i CountryCily A) o Country |
- |79 Countryld 1 ¢ Countryld I
I ¥ Cityld Co.m!ﬂNnme
i CityName |
5 T e
- Tee Extended table
Attractions List
= CoksmTtes Must belong
i Name Courtry Phat to...
= jtractions
I Afn ferschorNae Ty Nome s I

Remember that GeneXus determines the base table of the For each by the transaction name that is
mentioned next to it. In the example: Attraction
Why? Because it is the name of the transaction whose associated physical table we want to navigate.

In addition, all the other attributes inside the for each (printblocks, where, order, etc) must belong to the
extended table of the base table of the For each.

In the example shown in the slide, the base table of the For Each command -the base table that will be run
through- will be ATTRACTION; its extended table will be accessed in order to reach the required data.

For each Command/Base Table GeneXus

Review: Navigation list
Procedure AttractionsList Navigation Report =)
Name «" AttractionsList Environment @‘ Default (C2
ons List g
Ices o
Yes -
Levels =]
For Each Attraction (Line: 10) =)
Order: Attractionld PK .
IATTRACTION - A) oy Cotomoy
from: F oda la ("9 Attractionid | 4 Categoryld]
while: NotEndOfTable tabla : mﬁ CategoryName
Server -+~ " Countryld ®
P ot® egory
E=Attraction (Attra o gh P Cabugond. 4
=Country - Cityld I
I
- -
CountryCay s B, N Counky
L
¥ Countryld TSR Countryld
¢ Cityld Count_erm
CityName ——

The navigation list informs us that the base table is ATTRACTION, that the navigation order will be
determined by the primary key, Attractionld, and that the entire table will be run through, accessing
COUNTRY -in order to retrieve CountryName, the attraction country-.

For each Command/Base Table GeneXus

Determining the base table

+ Mustwe indicate a base transaction for a For Each command?

print Title
print ColumnTitles
For each

print Attractions
endfor

+ Answer:

No. GeneXus will be able to calculate the base table of the ForEach comand from the attributes includedin
the command. Theway inwhich it finds the base table will not be coveredin this course.

Indexes and their relationship with database queries
Order clause of the For Each command

Indexes /Primary andforeign keys GeneXus

Keys and indexes automatically created by GeneXus
Name Type Description Formula Nullable
¢ Atractond ~ 1d Attraction Id No
‘;" AttractionName Name Attraction Name No
& Countryld Id Country Id No
¥ CountryName Name Country Name
& Categoryld 1d Category Id Yes
¥ CategoryName Name Category Name :
L;Mttracuonphoto Image Attraction Photo Miuches SR Catngony
Cityld Id City 1d [§ Attractionid ‘ ¥ Categoryld
¥ CityName Name City Name AttractionName * CategoryName
Countryld
Categoryld
AttractionPhoto
Cityld
Primary Key: Attractionld +
Foreign Key: Categoryld CountryCity 5 ey oty
Foreign Key: Countryld "9 Countryld 1 B L
A . . ¥ Cityl y
Foreign Key: Countryld, Cityld ' g,::m CountryName

If we consider the Attraction table, we can see that GeneXus defines four keys at the associated physical
table level: the primary key and three foreign keys.

The third key by Countryld, which is not displayed in the table diagram, is created oOnly for those cases
when the user leaves the Cityld value empty.

Since {Countryld, Cityld} make up a compound foreign key, if it wasn't possible for the user to leave the
Cityld value null -that is to say, if he always had to enter a city value- a foreign key by CountrylD would be
unnecessary, because for a record to exist in CountryCity for that country, a control must have already
been made to check for the country's existence in the Country table.

The foreign key for Countryld appears, then, only because the Nullable property has been enabled for
Cityld.

Indexes /Primary andforeign keys GeneXus

Keys and indexes automatically created by GeneXus

zﬂ Aftraction X >
Structure G
Attribute Order Description
= L'_]j Attraction Indexes Attraction
= @ IAttraction Primary Key Automatic Index
® Attractionld Ascending Attraction Id
= @ IAttraction2 Foreign Key Automatic Index
¢ Categoryld Ascending Category Id
=)E IAttraction1 Foreign Key Automatic Index
¢ Countryld Ascending Country Id
e Cityld Ascending City Id

For each PK and FK, GeneXus createsan

Primary Key: Attractionld .) .
index in the associated table

Foreign Key: Categoryld
Foreign Key: Countryld Exception: an index by {A, B} already s, in
Foreign Key: Countryld, Cityld particular, an index by {A}

Indexes are an efficient way to access data. For example, we can consider a cook book with many pages
containing recipes, and with several indexes (alphabetic index, food type index, and so on). Likewise, the
tables that store records also have indexes.

When creating physical tables, GeneXus creates for them one index by the primary attribute of the table
(that is to say, by its primary key, whether it is simple or compound), and one index by each foreign key.
This is done in order to control the consistency of data between tables more efficiently, as we will see in the
following page.

If we edit the Attraction table in GeneXus, the structure that indicates how it is made up is automatically
displayed. But if we open the Indexes tab, we can see the indexes that will be created over that table, in the
database.

We can see that three indexes will be created, with the names displayed. One by the Primary Key, and two
by the Foreign Keys. Why isn't an index by Countryld created? Because it's not necessary. If we have a
compound index by Countryld, Cityld, this is already an index by Countryld.

Indexes /Primary andforeign keys GeneXus

Keys and indexes automatically created by GeneXus

Atractn D : T
l | | = @ ICategory Primary Key
¥ Attractionid ¥ Categoryld * Categoryld Ascending
AttractionName CategoryName
Countryld
Categoryld
AttractionPhoto
Cityld Referential Integrity Controls:
= [Attraction Indexes In the Aftraction table:
- @ [Attraction Primary Key
+ Attractionld Ascending + Unigueness Control: IAttraction
- [1Attraction2 Foreign Key + It checks thatthere are no attractions of a certain category that
e Categoryld Ascanding we'e trying to delete from Category: IAttraction?2
= % IAttraction1 Foreign Key :
* Countryld Ascending In the m table:
e Cityld Ascending

+ Unigqueness Control: ICategory
« Whentrying toinsert an attraction in a certain category of
Attraction, it checks that it exists: [Category

As we said, these indexes are created to improve the efficiency of the referential integrity controls
automatically made by GeneXus in transactions.

Primary key indexes are created in tables to make duplicate controls more efficient, and also to enhance
searches when trying to insert or change the foreign key that makes reference to that primary key from
another transaction. For example, when we're inserting a new attraction from Attraction, and we need to
check whether the Category table contains a category with that Categoryld value. In this case we use the
PK index of Category (ICategory).

Foreign key indexes are created in tables for cases when we want to delete a record from a transaction
that has the primary key to which that foreign key makes reference -in our case, Category. They allow us to
know, quickly and efficiently, if there is any related record in order to prevent the record from being
deleted. In this case, if we are going to delete a category from the Category transaction, GeneXus must
know that there aren't any attractions with that category in order to allow it. So, it uses the |Attraction2
index of Attraction.

Indexes / Candidate keys GeneXus

Candidate keys and indexes

+ Foranentity we mayhave more than one attribute or set of attributes thatidentifyit; thatis to say, their
values cannot be repeated.

Name Type
= {54 Customer Customer
PK —— ¥ Customerld Numeric(4.0)
} CustomerName Character(20)
¢ CustomerLastName Character(20)
CK — olaswmennd ENSEEE
CK ———» » CustomerPassportNumber Passporthumber
® CustomerAddress Address, GeneXus
¢ CustomerPhone Phone, GeneXus
¢ CustomerEMail Email, GeneXus
® CustomerAddedDate Date

* A candidate key is defined as a unique index.

As we had said in the class about 1to 1 relationships, for every level in every transaction we must define the
attribute or set of attributes that make up the level identifier. At the physical table level, this identifier will be
translated into the primary key of the table. This means that the values of this attribute or set of attributes
must not be repeated.

But in many cases, there's more than one attribute or set of attributes that must meet this condition. For
example, we choose to identify customers with an internal number in our system, but we may also use as
secondary attribute his DNI or ID card -issued in his country- or even this passport number, which must
also be unique. Since we have to select one of these three attributes (Customerld, CustomerDNI,
CustomerPassportNumber) to identify the entity (in this case we choose Customerld), if we don't do
anything else the others will be used as secondary attributes, and they may be repeated.

How do we tell GeneXus that both CustomerDNI and CustomerPassportNumber are candidate keys, so
that it makes sure that they are not repeated for different customers? We had already seen that we had to
define an index for every candidate key.

Indexes / Candidate keys GeneXus

Candidate keys and indexes

+ The Customer table only has one index defined by PK

—_
HH Customer X
Structure

Attribute Order Description

,_"j Customer Indexes Customer
= 'g ICustomer Primary Key Automatic Index
® Customerld Ascending Customer Id

+ The developer must create unique indexesto create candidate keys.

Attribute Order Description
= _L\j Customer Indexes Customer
] % ICustomer Primary Key Automatic Index
® Customerld Ascending Customer Id
= @?UCustnmerDNI Unique User Index
® CustomerDNI Ascending Customer DNI
= @ UCustomerPassport User Index
® CustomerPassportNumber Ascending Customer Passport Number

If we look at the indexes that have been automatically defined in the Customer table, we can see that we
only have the primary key index.

We need to create an index for the CustomerDNI attribute and set it as Unique. That is to say, tell it that its
values cannot be repeated.

The same applies to the CustomerPassportNumber attribute.

In this way, GeneXus will infer that it must use every unique index that the table has defined to control the
uniqueness of these values. That is to say, if, when entering a new customer the user types an ID card that
already exists for another customer, the transaction will trigger an error to inform him about this situation
and will not allow saving the new record.

Indexes / Optimization of queries GeneXus

Other indexes that must be created by the developerto optimize queries

print Title O e —
print ColumnTitles AttractionPhob
For each Attraction order AttractionName Attractionkd - - Attrachoniame Loontryame i
print Attractions
endfor
rWarnings én
spc0038 There is no index for order AttractionName; poor performance may be noticed in
group starting at line 3.
Levels =
For Each Attraction (Line: 10) o
Order: AttractionName
No index
Navigation Start from: FirstRecord
filters: Loop NotEndOfTable
while:

Join location:

‘Bl=Attraction (Attra

=Country

We had already seen that if we add an Order clause by attraction name, the navigation list shows a warning
to inform us that the database doesn't have an index for the attribute by which we need to order the data.
As a result, the query may have poor performance.

When we give GeneXus an attribute by which to order data, it tries to order it in an efficient way; therefore,
it looks for an index by that attribute. Next, it informs us that it can't find one.

Indexes / Optimization of queries GeneXus

Print Title
Cowby 8 For each Attraction order AttractionName
¥ Countryld | print Attractions
CountryName Endfor
A
i
CountryCly 2
¥ Countryld ™ Atractn 2 I d
' C"’"dm ¥ Attractonid | n ex?
CityName w AttractionName
4 gmdld
Catogay 2 AttractionPhoto
["% Categoryld | Cityld
CategoryName
_ Attractionld AttractionName Countryld Categoryld AttractionPh... AttractonPhot... Otyld
1] Louvre Museum B 2 1 <Brarydata> gxdbfielouvre_... 1
2 Great Wal we 3 3 <Bnary data> gudbfie:Greatw... 1
Eiffel Tower o 2 2 <Bnary data> gudbfie:EffelTo... 1
___/_——)- The Christ Redeemer e 1 2 <Bnary data> gxcbfie:Christ-t... 1
'__/ The Smithonian Museun 4 1 Brarydata> gucbfie:The-Smi... 1
A L ML L m MU L

Suppose that the ATTRACTION table contains the data that is displayed. If we need to obtain its records
ordered by the AttractionName attribute, the records will have to be reordered, because by default they are
ordered by the attribute that is a primary key.

When a query is created, if there is a physical index created in the table for the attribute to order by,
GeneXus will use it. In this case, the query has to be ordered by a secondary attribute: AttractionName. In
the navigation list associated with the object, GeneXus warns us that an index hasn't been created.

Indexes / Optimization of queries GeneXus

Print Title
Couby 8 For each Attraction order AttractionName
¥ Countryld | print Attractions
CountryName Endfor
A
i
CountryCly 2
¥ Countryld ™ Atractn 2 I d
' C"’"dm ¥ Attractonid | n ex?
CityName w AttractionName
4 gmdld
Catogay 2 AttractionPhoto
[¥ Categoryld | Cityld
CategoryName
_ Attractonld AttractonName Countryld Categoryld AttractonPh... AttractonPhot... Cityld
1} Louvre Museum . 2 1 <Binary data> gudbfiezlouvre ... 1
reat Wa 2 Great Wal 3 3 <Bnary data> gxdbfie:Greatw... 1
Effel Tower 8 2 2 <Binary data> gudbfie:EffelTo... 1
4 The Christ Redeemer 1 2 <Bnary data> gxdbfie:Christ-t... 1
The Smithonian Museum .4 1 <Bnary data> gxdbfie:The-Smi... 1
Obelisk of S3o Pauo 1 2 <Binary data> gxdbfile:Obelsk
ML ML ML mu ML M

The existence of an index would optimize the query. On the other hand, the disadvantage of creating an
index is that it must be maintained. That is to say, if users add, change or delete attractions in the
ATTRACTION table, the index must be rearranged (the index pointers must be rearranged so that the new
attractionsare included in the corresponding locations to keep the order).

Creating an index in GeneXus for a database table is a simple task, and it can be done at any time. In
addition to creating it, we can delete it at any time.

Indexes / Optimization of queries GeneXus

Creation of user indexes (unique or duplicate)

@ Attraction® X X

Attribute Order Description
= u_\j Attraction Indexes Attraction
= @ IAttraction Primary Key Automatic Index
® Attractionld Ascending Attraction Id
= % IAttraction2 Foreign Key Automatic Index
* Categoryld Ascending Category Id
= % IAttraction1 Foreign Key Automatic Index
¢ Countryld Ascending Country Id
e Cityld Ascending City Id
INGOXNAME ey G

¢ AttractionName Ascending Attraction Name

S 3 Uacracsornane RSN

® AttractionName Unique Attraction Name
Duplicate

Attribute by
which to index

Creating an index for a database table is a simple task, and it can be done at any time.
How? We look for the table, open it and go to the section related to the indexes defined.

The first three that we see in the example, which are preceded by the prefix “I”, are those automatically
created by GeneXus based on the primary and foreign keys.

We need to create our own index, that is to say, a user index. To do so, we press Enter, which will display
the default name UAttraction. We change it as needed (by adding Name at the end, for example). The prefix
“U” corresponds to User.

We want this index to be made up by the AttractionName attribute, arranged in ascending order.

If a requirement stated that attraction names must not be repeated, we can control it by indicating that the
index be Unique, and not Duplicate, as we've seen before. If we set an index as Unique, when entering an
attraction (or changing its name) a control will be automatically made to check that there isn't another one
with the same name -using this index. In our example, names can be repeated (for example, consider that
countries usually have an obelisk), so for this index by AttractionName, we leave the value: Duplicate.

Indexes / Optimization of queries GeneXus

Other indexes that must be created by the developerto optimize queries

Database needs to be reorganized

This report describes Database changes and how they will be handied by recrganization programs.
Please select Reorganize to proceed or Cancel

<", Reorganze Cancel

Pattem: Table Attraction specification =] A
- Table name: Attractior
O/ Attraction needs conversion
Table Structure £l
Attribute Definition Previous values Takes value from
Una vez
9 Antractionid e e
definido el AttractionName
indice, trvld
GeneXus
debe
reorganizarla X
Indexes 4
tablal para Name Definition Composition B
crearlo. IATTRACTION pricacy kay Chstere o

Referenced tahle Attributes

Once we've done this, the database will be reorganized by pressing F5 to create this new index. Remember
that the navigation list of the report informed us that we didn't have an index to solve the query. Let's see
what it says after reorganizing...

Indexes / Optimization of queries GeneXus

Other indexes that must be created by the developerto optimize queries

Procedure AttractionsList2 Navigation Report
Name o+ AttractionsList2
Attractions List2

evices File

Environment

Levels
For Each Attraction (Line: 10)

=
=

..From thenon, itusesit as
necessary.

We're told that it will use the index that has just been created.

Once we create it, we can delete it at any time. By pressing F5 and reorganizing, we go back to the status it
had before creatingiit.

The decision of whether to create the index or not will depend on the DBMS being used, of the frequency
with which queries will be made to order by AttractionName, and the frequency with which the table data is
updated.

Descending order GeneXus

Descending order

*+ How do we order the list of attractions by attraction name in descending alphabetical order?

* Enclosein brackets the attributes to be arrangedin descending order:

print Title

print ColumnTitles

For each Attraction order (AttractionName)
print Attractions

endfor

How do we configure it to use descending order? Simply by placing the attribute or attributes between
brackets.

Orders compatible with filters

For Each command/Order compatible with filters GeneXus

Ordering that is compatible with filters

print Title

print ColumnTitles
For each Attraction order AttractionName
where AttractionName >= ZNameFronm
where AttractionName <= &NameT

print Attractions

endfor
&NameFrom &NameTo
F) . ‘N’
‘Great Wall Louvre..
_ Attractionid AttractonName Countryld Categoryld AttractonPh... AttractonPhot... COtyld
—_— 1] Louvre Museum N 2 1 <Bnary data> gxdbfiesiouwre_... 1
sat Wa 2 Great Wal we 3 3 <Bnary data> gudbfie:Greatw... 1
~ Eiffel Tower B 2 2 <Bnary data> gudbfie:EffelTo... 1
» : The Christ Redeemer 1 2 <Bnary data> gudbfie:Christ-t... 1
The Smithonan Museum . 4 1 <Bnary data> gxdbfie:TheSmi... 1
Obelsk of S3o Paulo 1 2 <Binary data> gxdbfile:Obelisk 3
M mu aaL ML M ML

Now let’s suppose that we're interested in obtaining a list of attractions whose names are shown in
alphabetical order between two values received in a parameter. For instance, between “F” and “N”.

To do so, we enter the Where clauses indicated above.

Several Where clauses are equivalent to only one, where conditions are combined with the “and” logical
operator. That is to say, to be considered, records must meet all conditions at once.

If we're going to filter by AttractionName, and we have an index created by that attribute, we should always
order by AttractionName to optimize the query.

For Each command/Order compatible with filters

GeneXus

Ordering that is compatible with filters

print Title

print ColumnTitles

For each Attraction <Grder AttractionName
where AttractionName >= ZlNameFron
where AttractionName <= &NameT
print Attractions

endfor
Levels & warnings o
For Each Attraction (Line: 10) o4 spc0038 There is no index for order AttractionName; poor
performance may be noticed in group starting at line 3.
Order: AttractionName v 4
lodex: UATTRACTIONNAME ; - —
Navigation] Start AttractionName >= &NameFrom For Each Attraction (Line: 10) 4
filters: from: AttractionName
Loop AttractionName <= &NameTo -
while: aviga S achionName —
Join roeT N D AttractionName T
location: while
El=Attraction (Att o

=Country (

Optimized query!

Note that ordering by the attribute being used to filter values lower than or equal to the filter value, and
higher than or equal to the filter value, causes the table not to be run through. If there is an index created
by the developer, GeneXus uses that index and the query will be optimized.

If there isn't an index and, depending on the DBMS, it will be temporary created and after being used it will
be deleted. However, management systems usually have optimization strategies that may not require the
creation of temporary indexes. We will not address this topic any further.

For Each command/Order compatible with filters GeneXus

Ordering that is compatible with filters

print Title
print ColumnTitles

For each Attraction cOrder AttractionName

where AttractionName >= Glamerrom
where AttractionName <= &NameTc Non-optimized queryl
print Attractions '
endfor
Levels =)
For Each Attraction (Line: 10) - _PK a
Order: Attractionld
Index: IATTRACTION . s
Novigation [[Stat from: FrsiRecord | guee ™ It will run through the entire table...
f Loop while: No tEPdrﬂ’auc
straints: Att'ar-trr‘r‘Name >= aNameFrom | i '
R AN eTo } ...applying these restrictions to
Join location: Server everyrecord
‘Ed=Attraction (Attr >nl
=Country (Countryid

Note that if we don't enter the Order clause, GeneXus will order by primary key, and the entire table will
have to be run through to know if an attractionis included in the Where range or not

Applying conditions to orders and filters
When clauses

For each command/When clause to condition orders andfilters GeneXus

For each Attraction order AttractionName

Where AttractionName >= &NamefFr —_— Q ?

Where AttractionName <= &Nams S g

print Attractions n
Endfor

For each Attraction

Where AttractionName >= &NameFrom when not &NameFrom.IsEmpty()
Where AttractionName <= &NameTo when not &NameTo.IsEmpty()
print Attractions

Endfor

/ when not iNameFrom.IsEmpty ()
e when not &NameTo.IsSEmpty()

For each Attraction order AttractionName >
Where AttractionName >= &NameFrom when not &NameFrom.IsEmpty()
Where AttractionName <= &NameTo when not &NameTo.IsEmpty()
print Attractions

Endfor

What result will be obtained for the above For Each command if the &NameFrom and &NameTo variables
are empty? If there is an attraction with an empty name, it will be the only one returned because it will be
the only one that meets both conditions. Otherwise, there won’t be any attractions listed.

Is it possible to add conditions to orders and filters so that they are applied only under certain
circumstances? For example, to only apply the first Where when the &NameFrom variable is not empty.
And to apply second Where when the &NameTo variable is not empty. The answer is yes. We can do it by
adding conditions to Where clauses with when, as we can see in the second For Each. Where clauses will
only be applied when the condition is met. Thus, at runtime, when both variables are left empty, none of the
Where clauses will be applied and all the attractions in the table will be listed. If the variable &NameFrom is
empty but &NameTo is not, the first where clause will not be applied. However, the second one will be
applied, so all the attractions whose name is lower than or equal to &NameTo will be listed.

In the same way, we can add a condition to an order to have it applied or not, as we showed in the third For
Each command. In fact, a series of conditioned orders can be indicated, in order to choose the first one
whose condition is met.

Read more about orders and filtersin the GeneXus wiki
(http://wiki.genexus.com/commwiki/servlet/wiki?6075,0rder+clause)

When none clause

For each Command / Whennone GeneXus

When no records are recovered inthe for each

SAv ' g AB’
FOI“ each Attr‘act iOﬂ 1Ama<5<r:c Aty actonfiame Countryld Categoryld Attre. Atra Otyld
F . a Lowwre Museus .., 2 oAl
Where AttractionName >= &NameFron Grest wal g
Where AttractionName <= &NameT Bffel Tower s
e 2 vt i
print Attractions et oy
The Sethoran K gucdfl
Endfor‘ Obelsk of Sho P, e L
ML ML MU N
For each Attraction
Wt AttractionName >=
W AttractionName <=
Attractions
o = wamingMessage
WHEN NONE e e —————)
- AR g @000 memessesassessermemsiiiaisieessia s sitasiusvirianisionsaas e sAvenisasanises
print warningMessage There is no . attrachon in the ranoe
endfor

If a For Each command is included, itis considered an independent command.

What happens when none of the records in the base table meet the conditions?

Suppose that in this case we want to print a message in the output to warn about this... to do so we
program the when none clause that closes the For Each command.

All the commands written between when none and endfor will be executed in sequence, only in cases
when no records of the For each base table that meet the conditions can be found.

In this case, we have decided to print a message, but we may also type a series of commands, such as
another For Each command, for example.

Since what will be executed after the when none clause will imply that the search was unsuccessful, if we
type a For Each command there, the when none clause will not be nested. It will be like a standalone For
Each command.

Summary

For Each command / Summary GeneXus

Sintaxis del for each

For each BaseTransaction

order att,, att,, ... , att, [when condition]
order att,, att,, ..., att, [when condition]

where condition [when condition]

where condition [when condition]
main code

When none

endfor

As we already know, GeneXus determines the base table of the For Each command by the transaction
name that is mentioned next to it; the rest of the attributes mentioned, both in the For Each command body
(main code) and in the Order and Where clauses, will have to belong to the extended table of that base
table (that's why part of the syntax is underlined above).

The attributes mentioned in the when none block are not taken into account.

We gray out everything that we've seen before. Here, the when and when none clauses are added.

Later on we will see that more clauses are added to this essential command to access the database.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus._com/certifications

