More about rule execution order in transactions

GeneXus 16

More sbout order of execution intrensaction rules GeneXus

Sample transactions

¢ FlightDepartureCountryName
S¢ FightDepartureCityld
w FightDepartureCityName

Name Type Form q— Flight* X
4 Fight Flight
¥ Fightd 1d Structure * | % Web Form Events | Variables | Patterns
» FightDepar tureAirportid ("The seat quantity sustn't be less than eight”) 1
w FightDepartureAirporthame if FlightCapacity < 8 i
S¢ FightDepar tureCountryld on AfterLevel

Level FlightSeatChar;

1t(FlightavailableSeats, FlightCapacity);

» FlightArrivalAirportld W5 v
S¢ FightArrivalArpor tame
\ FlightArrivalCountryld E¥ Invoice X 2
S¢ FightArrivalCountryName 1
v FightAmivalGityld | % Web Form | Rules | Events | Variables | Patterns
W FlightArrivalCityName Name Type Formula Nullable
: 2:2:;" tPercentage Invoice Invoice
» Arineld ? Invoiceid Numeric(4.0)
¢ AilineName ¥’ InvoiceDate Date No
¢ AriineDiscountPercentage # Customerld Numeric(4.0) No
A FightFnalPrice ¥ CustomerName Character(20)
A, FightCapacity ¥ CustomerTotalPurchases Price
= FightAvaiableSeats . InvoiceTotalAmount Price sum(InvoiceFlightAmount);
. Flight Fight
Z SR ¥ Fightid 1d
" :zz::::w v FightAvailableSeats Numeric(4.0)
Y’ InvoiceFlightSeatQty Numeric(4.0) No
iy FightFinalPrice Price FlightPrice *(1-ArineDiscountPercentage. ..
A InvoiceFlightAmount Price InvoiceFlightSeatQty *FlightFinalPrice

Next, we will talk in more detail about the times available to condition the triggering of rules, especially in
transactions that have more than one level.

To explain this topic, we will use an invoice transaction (Invoice) that has a second level (Flight), to
represent the flights included in the invoice.

Note that in the Flight transaction we have added the FlightAvailableSeats attribute, which will be used
to record the seats available in each flight. The number of seats available will diminish every time that an
invoice is issued to a customer who has purchased a number of places (seats) in the flight.

Note: In the Customer transaction we've also added the CustomerTotalPurchases attribute to record the
total amount spent by the customer in flight ticket purchases.

Note that the InvoiceTotalAmount, InvoiceFlightPrice and InvoiceFlightAmount attributes of the Invoice
structure are formulas. Next, we will talk about the rules stated for Invoice to set its behavior.

e about order of executionin action rules GeneXus

Rules of the transaction

T invoce

Y Invoiced Numeric(4.0)
§’ InvoiceDate Date
Customerld Numeric(4.0)
¢ CustomerName Character(20)
¥ CustomerTotaPurchases Price
A InvoceTotalAmount Price sum(InvoiceFlightAmount);
Fight Fight
§ Fighud 1d
¢ FiightAvaiableSeats Numeric(4.0)
¥ InvoiceFightSeatQty Numeric(4.0)
;, FiightFinalPrice Price FlightPrice *(1-ArineDiscountPercentage...
&, InvoiceFightAmount Price InvoiceFightSeatQty *FightFinalPrice
B Invoice® X >
Structure | % Web Form * | Events | Variables | Patterns
1) Default(InvoiceDate, &Today);

Subtract(InvoiceFlightSeatQty, FlightAvailableSeats); "

Sf) Error('There is no more seats for sale')
6 if FlightAvailableSeats < ©;

Add(InvoiceTotalAmount, CustomerTotalPurchases);

< >

More about order of execution in transaction rules GeneXus

Evaluationtree of rules and formulas

(R) Default(InvoiceDate, &Today);

(R) Add(InvoiceTotalAmount, CustomerTotalPurchases);

(F) InvoiceTotalAmount = Sum(InvoiceFlightAmount)

(F) InvoiceFlightAmount = FlightFinalPrice*InvoiceFlightSeatQty

(F) FlightFinalPrice = FlightPrice*(1-AirlineDiscountPercentage...)

(R) Subtract(InvoiceSeatQty, FlightAvailableSeats);

(R) Error(“There is no more seats for sale”) if FlightAvailableSeats <0

CustomerTotalPurchases

error (‘There is no more seats...”)

InvoiceTotalAmount InvoiceDate

FlightAvailableSeat InvoiceFlightAmount &Today

Sy = %

InvoiceFlightSeatQty FlightFinalPrice

The order in which rules and formulas are triggered by GeneXus is based on the definition of rules and
formulas shown on screen.

When generating the program associated with the Invoice transaction, GeneXus will extract the
dependencies existing between the rules and formulas created. Also, it will create a dependency tree (or
evaluation tree) in a logical manner that will determine the evaluation sequence.

We can imagine that the tree is executed in a bottom-up manner. That is to say, every time an attribute
value is updated, all the rules and formulas that depend on this attribute (and that are located upwards in
the tree) are executed.

For example, if the number of seats in an invoice line (InvoiceFlightSeatQty) is updated, since this
attribute is part of the formula that calculates the cost of the flight (InvoiceFlightAmount), this formula
will be triggered again. The same would happen after changing the final price of the flight,
FlightFinalPrice, which is also included in the formula.

If the price for a flight is changed, the formula corresponding to the invoice total (InvoiceTotal) also has
to be triggered again because it depends on the value of each flight included in the invoice. Lastly,
changing the total also implies having to trigger the rule Add(InvoiceTotal, CustomerTotalPurchases)
because the customer's total purchases have to be updated.

In addition to triggering all the formulas and rules included in the right branch of the tree from the
attribute InvoiceFlightSeatQty, the formulas and rules included in the left branch will also be triggered.
That is to say, when the value of the InvoiceFlightSeatQty attribute is changed, the rule
Subtract(InvoiceFlightSeatQty, FlightAvailableSeats) that updates the number of seats available on the
flight (FlightAvailableSeats) is also triggered again.

Therefore, since this rule changes the value of the FlightAvailableSeats attribute, it will be evaluated
whether to trigger the rule Error(‘There are no more seats...”) if FlightAvailableSeats< O;

In sum, the rules and formulas stated in a transaction are usually interrelated and GeneXus
determines the dependencies existing between them, as well as the order in which they are
evaluated.

More sbout order of execution intrensaction rules GeneXus

Review triggering events
The rules we define are usually executed at the expected time.

+ Butin some cases we need tomodify the momentwhen arule is triggered.

Example:

.;_ Flight* X 2

Structure | % Web Form Events | Variables | Patterns

FlightId = ReturnFlightId(); I—»?

|
~ror("The seat quantity mustn't be less than eight") o
4 if FlightCapacity < 8
S on AfterLevel
6 Level FlightSeatChar;
8 0 Default(FlightAvailableSeats, FlightCapacity); v
< >

In the Flight transaction, the Flightld flight identifier is set as autonumbered.

If in reality the flight identifier is made up by letters that identify the airline and by numbers, a numeric,
autonumbered Flightld attribute cannot be used in this case.

Suppose that we have a procedure, ReturnFlightld, which returns the identifier to be assigned to a new
flight. (In a real-life situation, this procedure should choose the number of flight depending on the airline,
departure and destination, but we will simplify it).

If we type the rule shown above, when will it be triggered? In the Flight header, regardless of the
operation performed. That is to say, if any detail related to the flight is changed, the ReturnFlightld
procedure is invoked again to assign a new flight identifier, but in fact we want this to happen only if
we're inserting a new flight.

In addition, even when we're inserting a flight, we should obtain a new Flightld only if the transaction is
confirmed, because we may cancel the addition or it may be automatically canceled by an error. In these
cases, a new flight identifying number would be "taken" but it would never be actually used.

More sbout order of execution intrensaction rules GeneXus

Review triggering events

+ By addinga triggering eventwe change the momentwhen therule is executed by default

&8 Flight* X -

Structure | % Web Form D Events | Variables | Patterns

FlightId = ReturnFlightId() on Beforelnsert; Fi

W N =

Error("The seat quantity mustn’
if FlightCapacity < 8
on AfterLevel

Level FlightSeatChar;

After user has confirmed

v Right before inserting the record
associated with the 1st level, in
the corresponding physical table

(T N N

N

Default(FlightAvailableSeats, Frsgwevopoczey=yy T

To make sure that only one flight ID number is used if the transaction is confirmed, and that a number is
obtained only when a flight is inserted, we add the on Beforelnsert triggering moment to the rule that
assigns the Flightld.

This triggering moment will occur after the transaction has been confirmed; also, it will be executed at
the server level.

In addition, "before insert" means that it will be triggered after the flight header data has been validated
and right before saving the header data in the database.

Next, we will see that there are some key moments during the server's operation in relation to data
processing and the database.

More sbout order of execution in transaction rules GeneXus

Operationson data on theweb server

(After pressing Confirm)

In single-level transactions: In two-level transactions:
VALIDATE VALIDATE the header
SAVE SAVE the header
COMMIT VALIDATE the line
For each line
SAVE the line

COMMIT

After pressing Confirm, data travels from the web client (browser) to the web server.

On the server, operations are performed on data, such as:
- Validate data,

- Save data in the database, and

« Commit to the database.

If the transaction has two levels, after saving the header, for each line:

« data will be Validated and then

« theline will be Saved.

Lastly, the Commit operation will be performed to have the header details and all the transaction lines
consolidated in the database.

More sbout order of execution intrensaction rules GeneXus

Momentsfortriggering rules

In single-level transactions: In 2-level transactions:
On BeforeValidate On BeforeValidate
VALIDATE VALIDATE the header
On AfterValidate On AfterValidate
On Beforelnsert/BeforeUpdate/ BeforeDelete On Beforelnsert/BeforelUpdate/BeforeDelete
SAVE SAVE the header
In the On Afterinsert/AfterUpdate/ AfterDelete On Afterinsert/AfterUpdate/AfterDelete
he ve,r' after ["On BeforeValidate
press.mg VALIDATE the line
Confirm
For On AfterValidate
?aCh-‘ OnBeforelnsert/BeforeUpdate/BeforeDelete
ling SAVE the line
| On Afterinsert/ AfterUpdate/AfterDelete
On AferLevel Level Line attribute
On BeforeComplete On BeforeComplete
COMMIT COMMIT
On AfterComplete On AfterComplete

Once the transaction data reaches the web server, the rules and formulas will be triggered again at the
server level.

During this execution, several moments are available relatet to the Validation, Save and Commit of data
on the server. These triggering moments can be assigned to rules, so as to control when they should be
triggered.

This allows us to customize the triggering moment of a rule, so that it isn't triggered at the time chosen
by GeneXus according to its evaluation tree, but when we want.

Let's start by looking at the moments related to Validation: BeforeValidate and AfterValidate.

Triggering event: BeforeValidate

This triggering event occurs right before the information of the instance you are working with (header or
line x) is validated (or confirmed). That is, it will occur right before the “header validation” action or “line
validation” action, as applicable. Note that here too all the rules that are not conditioned to any triggering
event will have been triggered according to the evaluation tree.

Triggering event: AfterValidate

The triggering event AfterValidate allows you to specify that a rule be executed immediately before
physically saving each instance of the level which the rule is associated to, in the corresponding physical
table, and after the data of that instance have been validated.

In other words, if an AfterValidate triggering event is added to a rule, the rule will be executed for each
instance of the level it is associated to, immediately before the instance is physically saved (whether
it is inserted, modified or deleted) as a record in the physical table associated to the level.

More sbout order of execution in transaction rules GeneXus

Rules with triggering moments

& Flight* X
1 FlightId = ReturnFlightId() on BeforelInsert;
‘ On BeforeValidate
VALIDATE
On AfterValidate
| On Beforelnsert/BeforeUpdate/ BeforeDelete
SAVE

von Beforelnsert: Right beforeinserting On Afterinsert/AfterUpdate/ AfterDelete

v After the user has confirmed

the record associated with the 1st level,
in the corresponding physical table.

On BeforeComplete
COMMIT

On AfterComplete

Sometimes the Autonumber property is not available to automatically and correlatively number the
attributes that are simple primary key. That function is provided by the database managers (DBMSs) and
GeneXus takes advantage of it and enables its use; however, when we're not working with a database
manager, such feature is not available.

In the example that we've used, each flight identifier must be generated in a specific way. Also, the
autonumbered feature isn't useful, so a procedure has been coded to implement this numbering.

As we've explained, we need to have the rule executed immediately after the user has confirmed it, and
only if a new flight is being created.

These two possible definitions are correct to implement what we need:

Flightld = ReturnFlightId() if Insert on AfterValidate;

or

Flightld = ReturnFlightld() on Beforelnsert;
In the first definition we're indicating that the procedure must be executed only if an addition is being
made (in the triggering condition: if Insert), right after validating the first level data (because there's only
one attribute involved in the rule, and it belongs to the transaction's first level) and right before physically

saving the record (in the triggering event: on AfterValidate).

There are three triggering events that occur at the same time as AfterValidate, but which already
intrinsically contain the mode. These are: Beforelnsert, BeforeUpdate, and BeforeDelete.

In the second proposition, it would be redundant to condition the rule to "If Insert”, because Beforelnsert
intrinsically indicates that it is an insertion.

More about order of execution intransaction rules GeneXus

Rules with triggering moments

on Beforelnsert ~ If Insert on AfterValidate
on BeforeUpdate ~ If Update on AfterValidate
on BeforeDelete ~ |If Delete on AfterValidate

SAVE (header or line) L ;
”’ ~ (header or line)

on Afterinsert Level?
on AfterUpdate
on AfterDelete

Proc(attLevell) on Beforelnsert; = Before insert the header

Proc(attLevell, attLevel2) on Beforelnsert; ., Before insert each line

Therefore, the following equivalences are valid:

on Beforelnsert ~ If Insert on AfterValidate
on BeforeUpdate ~ If Update on AfterValidate
on BeforeDelete ~ If Delete on AfterValidate

If we define a rule in which we also include the triggering event on AfterValidate, or on Beforelnsert,
BeforeDelete, BeforeUpdate, but where, unlike in the examples we just saw, we reference at least one
attribute of the second level of the transaction in which we are defining the rule, the rule will be
associated to the second level.! Therefore, the rule will be executed immediately before physically
saving each instance corresponding to the second level of the transaction.

Triggering events: Afterinsert, AfterUpdate, AfterDelete

Just as there is a triggering event that allows you to define that certain rules be executed immediately
before the physical saving of each instance of a level (AfterValidate, Beforelnsert, BeforeUpdate,
BeforeDelete), there are also triggering events to define that certain rules be executed immediately after
a level's instances are physically inserted, updated or deleted. These events are Afterlnsert,
AfterUpdate and AfterDelete.

The triggering event Afterlnsert allows you to define that a rule be executed immediately after physically
inserting each instance of the level which the rule is associated to; AfterUpdate, after the instance is
physically updated, and AfterDelete, after it is deleted.

More sbout order of execution intrensaction rules GeneXus

Triggering events: examples of good and bad programming

Case: Print customer’s details

It's incorrect because it is invoked
BEFORE saving, so the table will

PrintCustomer(CustomerId) on AfterValidate; x not show the thanges m.ade to
the customer ‘s information

PrintCustomer(CustomerId) on AfterInsert, AfterUpdate; “ It’s correct!

It's incorrect because it is invoked
AFTER deleting, so the customer
will not be found on the table.

PrintCustomer(CustomerId) on AfterDelete;

Let's suppose that we want to call a report in the "Customer" transaction that gives a printout of the data
of each customer worked with through the transaction. At what point should we call the report from the
transaction?

Proposal 1: PrintCustomer.call{ Customerld) on AfterValidate;

This triggering event should not be added to the report calling rule, because if it were, the report would
be called immediately before the physical saving of each customer. Consequently, the report would
not find the customer with the customer's data on the CUSTOMER table (if a customer was being inserted
through the transaction), or it would find the customer with data that was not updated (if a customer was
being updated through the transaction). If instead, a customer was being deleted through the
transaction, the report would find the data of the customer in the CUSTOMER table and would list them
precisely before the physical update (deletion).

If this is what we want, that is, if we want to issue a list with the data of each customer that is deleted, we
would have to define the following rule:

PrintCustomer.call(Customerid) on BeforeDelete;

or its equivalent:
PrintCustomer.call(Customerld) if delete on AfterValidate;

to limit the triggering of the rule to customer deletions only, because only then would it be correct to use
the AfterValidate triggering event (as we need to issue the report precisely before deletion).

Proposal 2: PrintCustomer(Customerld) on Afterlnsert, AfterUpdate;
The triggering event Afterlnsert occurs immediately after each instance associated to a certain level of
the transaction is physically inserted (in this case, since the only attribute involved in the rule is

Customerld, the rule is associated to the first and only level of the "Customer" transaction).

The triggering event Afterlnsert occurs immediately after each instance associated to a certain level of

the transaction is physically inserted (in this case, since the only attribute involved in the
rule is Customerlid, the rule is associated to the first and only level of the "Customer"
transaction).

As is evident from its name, the Afterlnsert triggering event only occurs when a new
instance is inserted (precisely after being inserted as a physical record). This is why when
the on Afterlnsert triggering event is added to a rule, there is no need to add the if insert
triggering condition.

The AfterUpdate triggering event only takes place when a record is changed. That's why the
triggering condition "If Update" doesn't need to be added to it.

Adding this triggering event to the report calling rule is correct, because the procedure
would be called immediately after physically inserting or updating each customer. So
the report would find the customer with the customer's data updated in the CUSTOMER
table, and would print the data. Now, take into account that the customers is not
commited!

Proposal 3: PrintCustomer(Customerld) on AfterDelete;

The triggering event AfterDelete occurs immediately after each instance associated to a
certain level of the transaction is physically deleted (in this case, since the only attribute
involved in the rule is Customerid, the rule is associated to the first and only level of the
"Customer" transaction).

This triggering event should not be added to the report calling rule, because the report
would be called immediately after the physical deletion of each customer. Consequently,
the report would not find the customer with the customer's data in the CUSTOMER table.

More sbout order of execution intrensaction rules GeneXus

Triggering momentsin the second level

PrintFlightLocation(FlightId, FlightSeatld, FlightSeatChar) on AfterInsert;

On Beforevalidate

VALIDATE the header

On Aftervalidate

On Beforelnsert/BeforelUpdate/BeforeDelete
SAVE the header

On Afterinsert/AfterUpdate/AfterDelete

n Beforevalidate

SAUATE the Bite von Afterlnsert: Right after inserting each line

For ol AlEalidsts in the physical table corresponding to the
each = AT
line OnBeforelnsert/Beforelpd eforeDelete second level

SAVE the line

On Afterlnsert/AfterUpdate/AfterDelete
On AfterLevel Level Line attribute gl Exitline level

On BeforeComplete

COMMIT

On AfterComplete

If we define a rule in which we also include the triggering event on Afterinsert, but unlike in the
examples we just saw, we reference at least one attribute of the second level of the transaction in which
we are defining the rule, the rule will be associated to the second level. Therefore, the rule will be
executed immediately after physically inserting each instance corresponding to the second level of the
transaction.

Something similar happens with on AfterUpdate and on AfterDelete.
Let's now expand our earlier scheme of the actions surrounding the triggering events seen so far:

DATA VALIDATION

AfterValidate - Beforelnsert — BeforeUpdate - BeforeDelete
RECORD SAVING (insert, update, delete, as appropriate)
Afterinsert - AfterUpdate - AfterDelete

This scheme is repeated for each of the level's instances. For example, let's apply this to entering lines
corresponding to seats of a flight. This scheme will occur for each line, so that we can imagine a loop that
is repeated until the last line of the grid is saved as physical record.

The action that comes after the last line is saved would be to exit this level (in this case, the flight seat
level). And after that action, unless there's another level, which would take us back to the previous
scheme, the last action in the execution (i.e. commit) will occur.

Between the exit level action and the commit action, we'll have an event (BeforeComplete) and another
event for after the commit action (AfterComplete).

More sbout order of execution intrensaction rules GeneXus

AfterLevel and BeforeComplete triggering moments

Error('The seat quantity should be equal or greather than 8') if FlightCapacity<8
on AfterlLevel
Level FlightSeagtChar; —

| On Beforevalidate

VALIDATE the header

On Aftervalidate

On Beforelnsert/BeforeUpdate/BeforeDelete

SAVE the header

= Supplier X

Name
3=y Supplier
¥ Supplierld
- SupplierName
* SupplierAddress

On Afterinsert/AfterUpdate/AfterDelete
On BeforeValidate

VALIDATE the line

On AftervValidate

OnBeforelnsert/Beforelpdat e/BeforeDelete

HE] Phone AVE the |
S the line
¥ SupplierPhoneld N e TR
On Afterinsert/AfterUpdate/AfterDelete
' SupplierPhoneNumber . l =
i D Emal > AfterLevel On AfterLevel Level Line attribute
¥ SupplierEmaild On BeforeComplete
4 SupplierEmailEmail COmmT
» AfterLevel On AfterComplete

The AfterLevel triggering event allows you to define a rule so that it is executed immediately after the
iteration of a certain level is finished.

SYNTAX: rule [if triggering condition] [on AfterLevel Level attribute];

WHERE:

rule: is a rule of the kind admitted in transactions

triggering condition: is a Boolean expression that admits attributes, variables, constants, and functions, as
well as Or, And, and Not operators.

attribute: is an attribute belonging to the level after whose iteration you want the rule to be executed.

If the attribute specified after the AfterLevel triggering event belongs to the second level of the
transaction, the rule will be executed when the iteration of all the lines in the second level is finished.

And if the attribute specified after the AfterLevel triggering event belongs to the first level —following
the same line of reasoning— the rule will be executed after the iteration through all the headers is
finished. Note that this occurs at the very end, that is, after all the headers and their lines have been
entered and after closing the transaction (at that point all the headers will have been iterated). Therefore,
if the attribute specified belongs to the first level, the rule will be triggered only once before the Exit
Event (this is an event that is executed only once when the transaction is closed in runtime, as we will see
later).

This triggering moment is used in the rule stated to validate that 8 seats or more are entered for each
flight displayed on screen.

The event called BeforeComplete, in this case, is the same as the AfterLevel event. If we look at the
scheme shown above, we can see that the moment between exiting the last level and performing the
commit action is the moment in which these events occur. Both triggering moments occur at the same
time as long as the level exited is the last one.

To help understand this, suppose that there's a transaction with two parallel levels; for example, a

Supplier transaction that has a nested level for telephone numbers and another level for
email addresses:

The triggering moment of a rule conditioned to: On AfterLevel Level
SupplierPhoneNumber WILL NOT COINCIDE with the triggering moment of a rule
conditioned to on BeforeComplete. The rules conditioned to on AfterLevel Level
SupplierEMailEMail will match because it is the last subordinate level of the transaction.

While the first rule will be triggered when the telephone level is exited, and before validating
all the e-mails, the second rule will be triggered after exiting this last level.

In this case, the BeforeComplete event will coincide with the AfterLevel Level
SupplierEMailEMail event.

More sbout order of execution intrensaction rules GeneXus

AfterComplete Triggering moment

PrintFlight(FlightId) on AfterComplete;

On BeforeValidate

VALIDATE the header

On Aftervalidate

On Beforelnsert/BeforeUpdate/BeforeDelete
SAVE the header

von Aftel ('Zompl@te- On Afterinsert/AfterUpdate/AfterDelete
- a - = areValic
Right after performing Commit kb
VALIDATE the line
to the database For | .
each On Aftervalidate
|iﬁe - OnBeforelnsert/Beforelpdat e/BeforeDelete

SAVE the line

On Afterinsert/AfterUpdate/AfterDelete
b

on AfterLevel Level Line attribute

. e
On AfterComplete

This event corresponds to the instant immediately after the commit.

If three flights are entered in the Flight transaction (information regarding the 15t level + its respective
seats) and the transaction is closed, there will be 3 commits occurred and after each commit the rules
will be executed with on AfterComplete triggering event.

The header’s attributes still have value in memory when the rules are executed with AfterComplete
triggering event. Even when the commit has already been executed, it is typical to invoke a procedure
that lists the information saved and committed, passing by parameter the primary key to the object
called.

We will talk more about this event when we study transactional integrity.

More sbout order of execution intrensaction rules GeneXus

Execution in 2-leveltransaction

Interactively and before pressing Confirm:

A STAND-ALONE RULES

» THEY ARE TRIGGERED AS SOON AS THE TRN IS
EXECUTED

- THERE ARE NO CONDITIONS SET FOR THER
EXECUTION, AND THEY DON'T HAVE TO WAIT
FOR DATAIN ORDER TO BE EXECUTED
RULES AND FORMULAS TO THE EXTENT THAT
ASSOCIATED DATA FROM THE 1ST LEVELIS

Seat Id Seat Location Seat Char

AVAILABLE

FOR
RULES AND FORMULAS TO THE EXTENT THAT EACH
ASSOCIATED DATA FROM THE 2ND LEVEL IS LINE

AVAILABLE.

As the user enters data in the transaction and before pressing Confirm, the rules and formulas will be
triggered according to the evaluation tree to the extent that the various attributes are involved. Stand-
alone rules will be the first rules to be triggered.

They are the rules that:

1. May be executed with the information provided by the parameters received.
2. Do not depend on anything to be executed.

« Examples of stand alone rules (that may be executed with the information provided by parameters):
&A = parameter2;
Msg('...") if parameteri=17;

« Examples of stand alone rules (that do not depend on anything to be executed):
msg(‘You are in the flight transaction’);
&A=7;

Therefore, they are the first rules executed.

Following the execution of the stand alone rules the rules and formulas associated with the 15t level in the
transaction with no triggering event defined (that is, with no specification of on ...) are executed,
provided that the values involved to execute them become available.

And when working on the 2" level (grid), for each line, the rules and formulas associated with the 2nd
level in the transaction with no triggering event defined (that is, with no specification of on ...) are
executed provided that the values involved to execute them become available.

More sbout order of execution intrensaction rules GeneXus

Execution in two-level transaction

After confirming the data, executions take place on the server in this order:

STAND-ALONE RULES

RULES AND FORMULAS OF 1ST LEVELATTRIBUTES
: WITHOUT TRIGGERING MOMENTS

BeforeValidate
VALIDATE THE HEADER
AfterValidate / Beforelnsert - Update - Delete
. SAVE THE HEADER
seat Afterinsert / Update / Delete
Seat |d Seat Location Seat Char \
RULES AND FORMULAS OF 2ND LEVEL ATTRIBUTES
WITHOUT TRIGGERING MOMENTS

BeforeValidate > FOR

VALIDATE THE LINE EACH
AfterValidate / Beforelnsert - Udpate - Delete LINE

SAVE THE LINE
Afterinsert/Update/Delete)

END 2ND LEVEL ITERATION
nce AfterLevel Level 2ndLevelattribute - BeforeComplete
COMMIT

AfterComplete

After the user presses on Confirm, data travels to the web server. The server runs through the form again
as if it was a user and the rules and formulas will be triggered again. However, if now there's a rule
conditioned to a triggering moment in the server, it will be triggered at its own time and not according to
the evaluation tree.

The order of execution will be as follows:

Execution of Stand-alone Rules.

Execution of all rules and formulas associated with the 1st level which have no triggering event defined.
Execution of rules associated with the 1st level with BeforeValidate triggering events .

Validation of data entered for the 15t level.

Execution of rules associated with the 1st level with AfterValidate triggering events.

e if the saving corresponded to an insertion: the rules associated to the first level of the transaction with
Afterlnsert triggering event will be executed.

e if the saving corresponded to an update: the rules associated to the first level of the transaction with
AfterUpdate triggering event will be executed.

e if the saving corresponds to a deletion: the rules associated with 1st level in the transaction
with BeforeDelete triggering event will be executed.

The SAVING action is executed. This means that the instance corresponding to the 15t level in the
transaction will be physically saved as physical record in the corresponding table (in this example, in the
FLIGHT table).

Immediately after that saving:

- if the saving was an insertion: the rules associated with the 1st level in the transaction, with
Afterlnsert triggering event, are executed.

- if the saving was an update: the rules associated with the 1st level in the transaction, with
AfterUpdate triggering event, are executed.

- if the saving was a deletion: the rules associated with the 1st level in the transaction, with
AfterDelete triggering event, are executed.

After running all the operations explained so far, a COMMIT operation will be made, and all
the rules with AfterComplete triggering event will be executed.

It must be kept in mind that all the operations explained will be executed in the order in
which they have been described, for each flight accessed through the Flight transaction
(whether to enter, edit or delete them).

Learning the order in which the rules in a transaction are executed, the triggering events
which are available to assign to them, the exact moment when they are triggered, and what
actions take place before and after each triggering event is very important, because this
knowledge is essential to be able to program the transactions' behavior correctly.

More sbout order of execution intrensaction rules GeneXus

Exercises

When will these rules be triggered?

+ Something(Flightld) on Beforelnsert;

Aninstantbeforeinserting therecord corresponding to the 1st level.

+ Something(Flightld, FlightSeatld, FlightSeatChar) on Beforelnsert;

Aninstantbeforeinserting each record corresponding to the 2nd level.

+ Something(Flightld) on Beforelnsert Level FlightSeatChar:

Same as the previous case. Note that Level FlightSeatChar specifies thatreferenceis made to the
Beforelnsert of lines andnot of the header.

More sbout order of execution in transaction rules GeneXus

Exercises

Some of these rules are no programmed correctly. Which ones?

* FlightPrice=2000 on Afterinsert;

Incorrect: The lastmoment to assign value to a header attribute isimmediately prior to savingit
(Befarelnsert).

+ Something(FlightPrice)on Afterinsert;

Correct: here the value of a header attribute is passed. Thisvalueis availablein memory. Last moment
possible for usingit AfterComplete.

+ Something(Flightld,FlightSeatld, FlightSeatChar)on AfterLevel Level FlightSeatChar;

Incorrect: the rule with no triggering eventis associated with the Znd level, meaning thatitwould be

triggered for each line. But the triggering event conditions it to be executed upon exiting the lines... and
we nolonger have 2ndlevel’s attribute values.

More sbout order of execution intrensaction rules GeneXus

Rules with the same triggering event

- Are triggered in the same order in which they were defined

Example 1
xxx() On AfterComplete;
yyy() On AfterComplete;

Example 2
Option 1
Something(Flightid, &flag) On AfterComplete;
error(" ") if&flag ='N"On AfterComplete;
Option 2
&flag = Something(Flightld) On AfterComplete;
error(" ") if &flag="N"On AfterComplete;

When two or more rules are defined in a transaction with the same triggering event and there is no
dependence between them, they will be executed according to the order of definition.

Examples:

Example 1: Since the two rules defined are conditioned with the same triggering event and there is no
dependence between them, they will be executed in the same order in which they were written.

Example 2: In a transaction it is necessary to invoke a procedure that performs a specific validation and
returns a ‘Y’ or an ‘N’ value; and if the value returned is ‘N’, then an error message must be informed.

To solve this we will evaluate the two option shown above.

In the first alternative we defined a rule that invokes, as program, an object and an error rule. Both rules
have the same triggering event, and apparently there would be dependence between them since the
error rule is conditioned to the value of variable &flag, and the &flag variable is passed by parameter in
the invocation.

However, even when such dependence may seem evident because in the procedure we will be
programming the output variable &flag, in the rules section of the transaction —where the rules we are
considering are located—, the specifier of GeneXus cannot tell whether the parameters passed in an
invocation as program are input, output, or input-output. Therefore, the specifier will not find
interdependence between the call and error rules because the &flag variable could be passed as input
variable to the procedure, and in that case for example, there would be no dependence, by virtue of
which the invocation as program is to be executed first, and the error rule afterwards.

So, in conclusion, no dependences are detected between the rules of option 1, thus they will be triggered
in the order in which they were written. It is important to see here that if the rules were written in reverse
order (that is: first the error rule and then the invocation as program), then the behavior will not be the

one expected in many cases.

Regarding the second alternative, we should note that it consists of a rule that invokes as
function the object Something and an error rule. Both rules have the same triggering
event, and in this case there is dependence between them, because the error rule is
conditioned to the value of the &flag variable, and since the invocation to the procedure
is done as function, to GeneXus it is clear that the &flag variable returns modified from the
procedure. So, GeneXus understands that the invocation to the procedure as function
must be triggered first, followed by the error rule, because the &flag variable is loaded
through the invocation to the procedure and after the variable has a value there will have to
be an evaluation as to whether the error rule is to be triggered or not.

In case Option 2 then, regardless of the order in which the two rules were defined, the
invocation to the procedure as function will be triggered first, and the error rule will be
triggered afterwards (if the triggering condition has been complied with, of course).

This is why invocation as function instead of as program is recommended for defining
validations of this type.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

