Names of different attributes for the same concept

More use cases of subtypes

GeneXus 16

Multiple References

Subtypes / Multiple References GeneXus

Multiple References

Name

Tl Fight
¥ Flightid

S,. FlightDepartureAirportid
FlightDepar tureAirpor tihame
FlightDepartureCountryld
FlightDepartureCountryName
FlightDepartureCityld
FlightDepar tureCityName

‘tﬂ ‘U'l ll.’l ~UI

0
s

Airportld
Airpor thiame
Countryld
CountryName
Cityld

LU R R R Y

CityName

Subtype
L FlightDepartureAirport

¥ FightDepartureAirportid

& FightDepartureAirporthame
 FightDepartureCountryld

¢ FightDepartureCountryName
& FightDepartureCityld

¢ FightDepartureCityName

Description

Fight Departure Airport Id
Fight Departure Airport Name
Flight Departure Country Id
Flight Departure Country Name
Flight Departure City Id

Flight Departure City Name

Couny e] Gy

| ¢ Countryld
CountryName y Cityld

» Flightld
FlightDepartureAirportld

Airportid

Supertype

Airportld
Airpor thame
Countryld
CountryName
Cityld
CityName

We saw a case where we needed to define a group of subtypes because, in a transaction, we had a
double reference to the same actor from reality. It was the case of the Flight transaction, where we had a
departure airport and an arrival airport. We could not include the same attribute -Airportld- two times in
the structure of the transaction. And that’s why we decided to leave that attribute for the arrival airport
role and defined a subtype of Airportld which we called FlightDepartureAirportld in order to identify the
departure airport (we defined it within a group that we called “FlightDepartureAirport”).

Since we wanted to infer the country and city of that airport, in the “FlightDepartureAirport” group we also
defined subtypes of the attributes corresponding to the country and city, in addition to a subtype of the
airport name.

Therefore, when in the Flight transaction we name FlightDepartureCountryName, we know that it will be a
CountryName inferred through the departure airport FlightDepartureAirportld. These subtypes were
defined within the same group, so an association and relation have been established between them.

And when in the Flight transaction we name CountryName, we know that it will be inferred through the
Airporld attribute.

So, there are no ambiguities. We have two perfectly differentiated ways to reach Country, from Flight.

Subtypes / Multiple References GeneXus

Multiple References Direct
{5 Fight e Y le o “
¥ Flightld ¢ Countryld [Countryld
S, FlightDepartureAirportld CountryName t g:gﬁm
S, FlightDepartureAirporthame A
$, FiightDepartureCountryld
S, FlightDepartureCountryName
8, FiightDepartureCityld) 3
S, FlightDepartureCityName Fight 2 Parpat 2
S, FlightArrivalAinportid ¢ Flightid ¥ Asrportld
S, FightArivalAirpor thame Flight eAirportld é-rpmhll:me
s 1 TivalAn ountry
2 FlightArrivalCountryld Cityld
S, FlightArrivalCountryName -
S, FlightArrivalCityld
8, FlightArrivalCityName
Subtype Description Supertype Subtype ~~ Descriptien Supertype
& FightDepartureAirport o FightArrivalrport
1 FightDepartureArportid Fight Departure Arport Id Arportld ¥ AghtAmvalArportid Fight Arrival Arport Id Arportld
+ FightDepartr e Arpor iame Fight Departure Arport Hame Arpor Tiame * FightArmvalArpor thame Fight Arrival Arport Name Arporthame
+ FightDepartureCountryld Fight Departure Country Id Countryld * AghthrivaiContryid Fight Arrival Country 1d Countrytd
* FighDepartureCountryhame Fight Departure Country Name Countryame ® FighthrrivalCouniryhame AP fackues Comsiry M Countryhame
* FighDepartureCiyld Fight Departure City Id Ctyld * FightrrivalOtyld Pight Arvivel Oty 1d Ctyld
* FighDepartureCityhame Fight Deperture Gty Name CtyName « FightarmaiCityName Fight Arrrval City Name Ctytiame

Another option was to also define a group of subtypes for the arrival airport role. The data model will
reflect the same relations as in the previous solutions.

Multiple References
Indirect

__Country
¥ Countryld
» CountryName
{_] City
} Cityld
4~ CityName

CountryCity

» Countryld
Cityld w
CityName

Attraction
¥ Attractionld

y Countryld
2 AttractionName

CountryName
Countryld Altractian 2 «
CountryName
Categoryid "¢ Attractionld
¢ CategoryName ‘ AttractionName

aal AttractionPhoto Categoryld . *
TourGude

* Gtyld AttractionPhoto

¢ Chytiomie Cityld ¢ TourGuideld

+ TourGuideld Countryld TourGuideName

+ TourGuideld gz:‘i‘::rusma"
T3 TourGuide

} TourGuideld
»° TourGuideName

* TourGuideLastName
¢ Countryld

¢ CountryName

vy

In the previous case we had a double reference from one table to another table that was directly related to
it. We will now see the case of an indirect relation.

Imagine that we add a transaction to record the tourist guides’ information. Each guide has a specific
nationality, so we have added the Countryld attribute to the corresponding transaction structure.

In the table diagram we can see that, from the Attraction transaction, we may infer the CountryName
corresponding to that transactions because it is in the extended table. Likewise, from TourGuide we also
infer its own CountryName, that is: the guide’s country.

If we now relate the Attraction and TourGuide entities by adding the TourGuideld attribute to the first one
-the guide’s identifier- representing that a tourist attraction will only have one guide assigned, then how
will the tables be related?

TourGuideld will be a foreign key in Attraction to the TourGuide table, so the relation will appear marked
with a blue arrow. This may lead us to think that now, from Attraction, there are two ways for inferring
CountryName, and that means that there is an ambiguity. In other words, since GeneXus has the
CountryName attribute in Attraction, where does it infer it from?, from the city of the attraction or from
the attraction’s tourist guide? If the two values match, this will not matter. But in this case, they will not
necessarily match. The country where the attraction is located will not necessarily match the country of
origin of the tourist guide.

We will then need subtypes in order to differentiate the two roles of CountryName.

Subtypes / Multiple References GeneXus

Multiple References

I Indirect
{Country

¥ Countryld . .

4 CountryName

y_J City v Countryw
P Cityld y Cityld ¥
»~ CityName CityName

% Attraction A

A Counby
¥ Attractionld ?
J° AttractionName - [e Countryld
¢ Countryld CountryName
¢ CountryName Altrach 3
Categoryld = o
¢ CategoryName I A 1
[sa] AttractionPhoto § Arachionid "
' i AttractionName

Atyd
e Categoryld TouGude
W e AttractionPhoto
Cityld | ¢ TourGuideld
pTourGu.deId S TourGuideLastName

*

J~ TourGuideName Countryld

® TourGuideLastName
Countryld
¢ CountryName

But in this case we will need them, not only to distinguish the roles. If we look at the table diagram after
the TourGuideld attribute has been added to Attraction, we will see that the relation between Attraction
and CountryCity has disappeared, meaning that Countryld is no longer a foreign key in Attraction. Note
that it is not in the table anymore, for it will be an inferred attribute. But, inferred from what? From
TourGuideld!

We should recall that, in the first place, GeneXus normalizes tables. This means that, based on the names
of attributes, along with the identifiers, it determines which attribute is placed in each table, as well as the
relations between the tables. Since TourGuideld -which is identifier of TourGuide- appears in Attraction,
and, in turn, Countryld -which is identifier of Country- appears in TourGuide, it is then understood that
upon a given TourGuideld in Attraction, the CountryName is inferred from it, passing through the
TourGuide intermediate table.

So, with this transaction design, we have lost the possibility of indicating which is the country of the
attraction. The CountryName will be that of the tourist guide.

We have no choice but to use subtypes in order for Attraction to have its own country, regardless of the
tourist guide’s country.

Multiple References .
Indirect

[Attraction ComtyCly &

¢ Attractionld "¢ Countryld

J~ AttractionName ! gg:‘:m ™

¢ Countryld Group: A

¢ CountryName AttractionCountryCity — 2

¢ C 1d

Categoryld ¥ o i

¢ CategoryName Arachan A «

{aal AttractionPhoto ¥ Attractionld

[* oo o —

e C ategory = =
AttractionPhoto L =

@ _CityName Cityld O

TourGuideld (M_Wld " TourGuideName
TourGuideld TourGuideLastName

¢ TourGuideLastName Countryld

Again, we are facing several alternatives. The most evident one is to set up a group of subtypes for the
attraction country/city.

Multiple References Indirect

FilAtracton) . 2
¥ Attractionld | ¢ Countryld =
J- AttractionName ' E:g':a - ”
S, AttractionCountryld 4 ~a
S, AttractionCountryName Counby 8
2 Categoryld /\ ¢ Countryld |
2 CategoryName i > CountryName
iaa| AttractionPhoto e ; of
S, AtractonCityld v Atractionld “
S, AttractionCityName gzmgm = *
TourGuideld AttractionPhoto
TourGuideld > TourGuideld
<: TourGuideLastName AliractonCountryld Tk GadiNain
¢ CountryName AttractionCityld TourGuideLastName

Countryld

&\ AstractionCountryCity X

Subtype Description Supertype Description
&5 AttractionCountryCity
¥ AttractonCountryld Attraction Country 1d Countryld
* AttractonCountryName Attraction Country Name Countryhame
¥ AtvactonCtyld Attraction Gty Id Cityld
* AttractonCityName Attraction City Neme CityName

Here we have defined a group of subtypes to represent the country and city of the attraction. Note that
now GeneXus will correctly represent the relations, in addition to inferring the CountryName attribute
from TourGuideld with no ambiguity. The attribute that represented by and in which the country of the
attraction is inferred will be the one called AttractionCountryName, subtype of CountryName, which

belongs to the AttractionCountryCity group.

Also note that this group has two primary attributes: AttractionCountryld and AttractionCityld, which
correspond to the primary key of the CountryCity table, due to the subtypes we indicated: {Countryld,

Cityld}.

Recursive Subtypes

Subtypes / Recursive Subtypes GeneXus

Recursive Subtypes

* When auto-referencing from an entity is required:

—Emoioyee ib——— sy
¥ Employeeld Id Employee Id ‘

FK J~ EmployeeName Name Employee Name No
¢ EmployeelastName Name Employee Last Name No

¢ EmployeelsManager Boolean Employee Is Manager No

S, EmployeeManagerld Employee Manager Id @
S, EmployeeManagerName Employee Manager Name
s,, EmployeeManagerLastName Employee Manager Last Name

& EmployeeManager X

Subtype Description Supertype

* EmployeeManagerName
¢ EmployeeManagerLastName

&5 EmployeeManager
¥ EmployeeManagerid Employee Manager 1d

Employee Manager Name EmployeeName
Employee Manager Last Name EmployeelastName

In our example, we are representing the data on the travel agency’s employees. Each employee may also
be the manager to another employee or employees. From all employees who have a manager, we must
indicate who the manager is. Specifically, the manager is also an employee. So, there is a relation between
the employees’ table with itself. To do this we must create a group of subtypes to represent the data
relative to the employees’ manager.

The EmployeeManagerld attribute will then be taken, to all effects, as an Employeeld. Therefore, it will
constitute a foreign key for the Employee table itself. So, when we enter data on one employee through
the transaction, upon the user’s selection of a value for the EmployeeManagerld field, GeneXus will
control referential integrity. This means that it will control the existence of a record in the employees’
table, with that value for the Employeeld attribute.

Specialization

Subtypes / Specialization GeneXus

Specialization

gPerson _ Data of individual
¢ Personld PERSON (in common for customers, passengers and
- PersonName employees)

¢ PersonBirthDate

CUSTOMER PASSENGER EMPLOYEE

Customers' details Passengers' details Employees' details
Sl Customer 5 Passenger =5 Employee

¥ Customerld ¥ Passengerld ¥ Employeeld

J~ CustomerName * PassengerName J~ EmployeeName

¢ CustomerTaxpayerld ® PassengerPassportNumber
¢ PassengerPassportExpirationDate

¢ EmployeeSalary

What do we mean by Specialization?

Suppose that the travel agency needs to handle specific information about its customers who acquire
travel tickets and tour packages (for instance, the customer’s Taxpayers’ Registry Number, if any), in
addition to having to record particular information on the passengers (such as passport numbers), as well
as specific data on the agency’s employees such as their salaries.

In other words, the travel agency will issue invoices to customers, it will record seats on flights assigned
to passengers, and it will issue wage receipts for employees.

Instead of what previously was just a transaction -Customer-, we could now define what is proposed here
above. Customers, as well as passengers and employees, are all persons, to they will have certain
information in common such as name, birthdate, etc.

And Customer is a Specialization of Person, just like Passenger and Employee.

We could read the following relation:

« Each Customer is Person

» Each Passenger is Person

« Each Employee is Person

Note that the proposal includes 4 Person transactions with data common to all persons. And then we have

the specializations: Customer, Passenger and Employee, each with its specific data (Customer will have
the Taxpayer number, while Passenger will have passport number and Employee a salary).

Subtypes / Specislization GeneXus

Specialization

=3
'Jerson» o Data of individual
¥ Personld PERSON (in common for customers, passengers and employees)
4~ PersonName
® PersonBirthDate A
v
CUSTOMER PASSENGER ’ EMPLOYEE
Customers' details Passengers' details Employees' details
Q- e = Eroioyee
§ Customerld ¥ Passengerld ¥ Employeeld
,.; CustomerName :zm::;m - J~ EmployeeName
* CustomerTaxpayerld R — P e s orDate * EmployeeSalary

We want the customer identifier to exactly match the identifier of a person, to reflect that the customer is
a person. This means that if the name of the person with ID 8 is Ann Roberts, and she was born on
05/05/1970, when we enter her information as customer, the user must be able to type in ID 8 into the
Customer transaction, and the name Ann Roberts must be shown upon exiting the field, to then enter the
Taxpayer ID number (CustomerTaxpayerld). Likewise, when we execute the Passenger transaction, we will
want that, upon typing in value 8 for Passengerld, Ann Roberts is to be inferred in PassengerName, and
the user must be able to assign the passport number and the expiry date in the corresponding attributes
(PassengerPassportNumber and PassengerPassportExpirationDate). And the same applies to the case of
employees.

If we just define Passenger and Employee as the primary keys of Customer, and the Customerld,
Passengerld and Employeeld attributes respectively without relating them in any way to Personld (and the
same with CustomerName, PassengerName and EmployeeName, without relating them to PersonName),
then we will not reach our objective. To GeneXus, they will all be fully independent transactions.

Subtypes [Specislization GeneXus

Specialization pmp—

¥ Personld

4~ PersonName

¢ PersonBirthDate

CustomerPerson X
& EmployesPerson X

Subtype Description Supertype Desa s+ PassengerPerson X

&4 CustomerPerson Subtype Description Supertype
Jostorerid Customer 1d (SRS [persol AlEroloyeePerson
* CustomerName Customer Name Persontiame Subtype Description Supertype ! Employeeld Employee Id Personld
&% PassengerPerson * EmployeeName Employee Name Personiame
At St Ul Passenger 1d Personld

o DassengerName Passenger Name Personiame

= el r —
""""" = . | Passenger =8| Employee
¥ Customerld ¥ Passengerld —
<«*
>~ CustomerName PassengerName v Emdovee[d
® CustomerTaxpayerld PassengerPasspor thumber - EmployeeName
* PassengerPassportExpirationDate ¢ EmployeeSalary

But we will define groups of subtypes to represent that a customer must be a valid person (that is: a
person that has been previously recorded), that a passenger must be a person, and that an employee must
be a person as well.

We create a group called CustomerPerson, where we define Customerld and CustomerName as subtypes,
respectively, of Personld and PersonName.

A second group called PassengerPerson, where we define Passengerld and PassengerName as subtypes,
respectively, of Personld and PersonName.

And a group called EmployeePerson, where we define Employeeld and EmployeeName as subtypes,
respectively, of Personld and PersonName.

When we do this, the Customerld, Passengerld and Employeeld attributes, besides being the respective
identifiers of the Customer, Passenger and Employee tables, and thus their primary keys, they will also be
foreign keys to the Person table.

Therefore, when the user enters a value in the ID of any of the three transactions (Customer, Passenger or
Employee), the search will be made in the Person table for a record whose ID is that same value.

Likewise, when we want to eliminate a person, we will control, through the Person transaction, that there
are no records in Customer where Customerld = Personld for the person we want to eliminate, and the
same for records in Passenger where Passengerld = Personld, nor records in Employee where Employeeld
= Personld. If any of these three records exist, then the deletion of that person will not be allowed.

Subtypes /[Specislization GeneXus

Specialization

1. PERSON 1
1
1 1
CUSTOMER PASSENGER EMPLOYEE

Person

y Personld
PersonName
PersonBirthDate

A

'S T -
Customer . Passenger . Employee

| ¢ Customerld ' | ¢ Passengerld ' Employeeld
CustomerTaxpayerld PassengerPassportNumber EmployeeSalary
PassengerPassportExpirationDate

Note that this design represents 1to 1 relations between the general table and the one corresponding to
each specialization.

This means that a person may be recorded only once as customer, because Customerld is a valid Personld
and it is also primary key. Likewise, a person may be recorded only once as passenger and only once as
employee.

A person may have the three roles, or be recorded only as person with no additional data as agency
customer or employee or passenger.

Think about the structure of the CUSTOMER, PASSENGER and EMPLOYEE tables. Obviously,
CustomerName, PassengerName, and EmployeeName will be attributes inferred (that will not be physically
in the respective CUSTOMER, PASSENGER and EMPLOYEE physical tables).

Note: the GeneXus diagrams do not show the 1to 1 relations. That is why we can see the double arrow on
the specialized tables side. With these arrows, GeneXus is just indicating the relations of foreign keys.

Subtypes GeneXus

More use cases

* Elimination of unwantedrelations by compound foreign keys.

50 TripPurchaseHistory o = Suppller e pen
ﬁ‘y Swplerld e s s s R GRS IR A SR 2 S0 ¢ ¥ Supplierld
¢ SupplierName ' SupplierName
>t Tpd_--="7 ' o ¢ SupplierAddress
¢ TripDate
¢ TripPurchaseHistoryQuantity
=7 ETrxp
‘—s\Tno?urchaseOrder ¢ PP > ¢ Tripld
‘ ¥ TripPurchaseOrderld J~ TripDate
" & Supplierld
¢ SupplierName # Countryld
b 2 Tripld ¢ CountryName
¢ TripDate # Cityld
® TripPurchaseOrderQuantity ¢ CityName

And there are more cases of use. For instance, when we have a transaction to record the purchase orders
of trips from suppliers of the travel agency, and another one to record the history of purchases by
supplier/trip, we will see that, among the foreign keys, one will be defined for relating the purchase order
with the historic purchases. However, we do not want it to be generated, because when the first purchase
order of a supplier/trip is created, there will be no records in the history.

A way to avoid that relation from being controlled is by modifying the name of some of the attributes in
the primary key of TripPurchaseHistory. This implies the definition of subtypes.

But this case will not be studied in detail in this course.

GeneXus’

The power of doing.

Videos training.genexus.com
Documentation wiki.genexus.com
Certifications training.genexus.com/certifications

