


Suppose that a customer makes several trips and accrues miles.

To implement the customer’s mileage accrual, in the Customer transaction we define the following rule:

Add(CustomerTripMiles, CustomerTotalMiles);

How does this rule behave?



The behavior of the Add rule varies, depending on the operation being performed:

• If a new trip is added for the customer, the value of CustomerTripMiles is added to CustomerTotalMiles.

• If a trip is deleted from the customer, the value of CustomerTripMiles is automatically subtracted from

CustomerTotalMiles.



If the value of CustomerTripMiles associated with a customer’s trip is changed, its configured value is

automatically subtracted and the new value is added to the customer’s total miles.



The Subtract rule has a similar behavior to that of the Add rule, but it subtracts the first value from the second
one if a trip is added.

Let’s consider the following Subtract rule:

Subtract(CustomerTripMiles, CustomerTotalMiles);

• If a new trip is added for the customer, the value of CustomerTripMiles is subtracted from CustomerTotalMiles.
• If a trip is deleted for the customer, the value of CustomerTripMiles is automatically added to
CustomerTotalMiles.



• If the value of CustomerTripMiles associated with one of the customer’s trips is changed, its configured value

is automatically added and the new value indicated is subtracted.



We have the Prize transaction, which allows defining rewards to be traded for miles.
Each reward requires a number of miles in order to be assigned to a customer who has accrued that number of
miles (or who has an even larger number of miles).
Therefore, when trying to assign 1 customer to 1 reward, we must check if the customer has enough miles to be
assigned this reward. If he/she has enough miles and accepts the reward, we must subtract the miles he traded.
If the customer doesn’t have enough miles, we need to show the corresponding error message.

Note the 2 rules defined for the Prize transaction. Since both involve the CustomerTotalMiles attribute, and one
of the rules updates the attribute and the other one assesses its value, GeneXus determines that first it must
make the subtraction that updates the CustomerTotalMiles attribute and then evaluate what happened with its
value.

Because the subtraction is made first, if the customer has fewer miles than those required by the reward, the
CustomerTotalMiles attributes will have a negative value. For this reason, the Error rule evaluates if
CustomerTotalMiles<0. If this happens, the Error rule is triggered, an error message is displayed and the
subtract rule is undone; that is to say, its execution is reverted as if nothing was done and the customer’s total
number of miles is not modified.

If CustomerTotalMiles doesn’t have a negative value (CustomerTotalMiles<0) after making the subtraction, it
means that the subtract operation has been performed.

Note that if the record of a reward assigned to the customer is deleted, the subtract rule adds instead of
subtracting. That is to say, to the total number of miles accrued by the customer (CustomerTotalMiles) it adds the
number of miles corresponding to the reward (PrizeMiles).



Lastly, let’s see how we can number the second level of a transaction.

Since the Autonumber property can only be applied to single primary keys, to automatically number a second

level we can use the Serial rule.

This rule requires defining an attribute in the 1st level of the transaction, which will save the last value assigned

to the lines of the second level.




