
Knowledge Leveling
Programming Concepts

ALGORITHMS

Introduction

Algorithms try to solve problems of reality (cooking a recipe, finding a percentage, evaluating conditions, etc).

They are an orderly and finite set of instructions that lead to the solution of the problem.

They can be classified into:

• Computational algorithm: It can be solved by a computer or device. To this end, it must be expressed in a

programming language. Algorithms expressed in a programming language are called "Programs."

• Non-computational algorithm: It cannot be solved by a computer or device (such as assembling a piece of

furniture, baking a cake, etc.).

Every algorithm can be broken down into three parts:

• Data Entry

• Processing

• Result output

Let's see some examples.

Algorithms - Introduction

An algorithm is a set of ordered steps that allows you to solve a problem with a

specific objective. An analogy is often made between Algorithms and recipes.

What is an Algorithm?

Characteristics:

➢ Precise: It must clearly indicate what is to be done.

➢ Finite: It must have a limited number of steps.

➢ Defined: The same result must be obtained for the same input conditions.

This problem cannot be solved by a computer, so it is a non-computational algorithm.

We need to enter the ingredients (input), process them (mix the ingredients, put them in the baking dish and

bake).

The output (result) is the cake ready to serve.

Algorithms - Introduction

INPUT:
2 oranges

1 egg

2 cups sugar

1 cup flour

START:
Incorporate all ingredients into a blender.

Pour the mixture into a buttered baking dish.

Bake for 40 minutes in a moderate oven.

END.

OUTPUT:
The cake is ready to serve.

Example: Recipe

Algorithms - Introduction

Example: Convert a number of meters to centimeters

INPUT:
Quantity M of meters.

START:

Calculation of centimeters: C = M * 100

END

OUTPUT:
Quantity C of centimeters.

Let's now look at an algorithm to express in centimeters a certain amount in meters.

This is a computational algorithm (it can be solved by a computer) written in natural language. In

order to be solved by a computer it must be written in a programming language, but it can also be

executed manually by a person.

The input data is the quantity in meters, the processing involves the calculation of centimeters

(using the corresponding calculation), and the output is the result in centimeters.

Algorithms - Introduction

Algorithms

In Software, we say that algorithms solve more general problems.

Examples:

➢ Sorting a cluttered data set

➢ Finding the verification digit of an Identification card

➢ Encrypting a password

➢ Calculating the area of a polygon

We can say that an 'Algorithm' is an ordered set of instructions that a computer must interpret in order to execute

a particular operation.

Algorithms - Introduction

➢ Specification: Is the High Level description of the Algorithm to answer the question 'What

does the Algorithm do?.'

➢ Implementation: Is the set of instructions in a programming language that allow the Algorithm to

achieve its objective set out in the Specification.

Algorithms

In summary, we can say that:

Problem: is a case of reality that you want to solve.

Algorithm: is the set of instructions needed to solve it.

Program: whether the algorithm can be solved by a computer or device (written in a programming

language).

FLOW CHART

Flow Chart - Introduction

➢ It's a graphical representation of the algorithm.

➢ The steps that the algorithm goes through are represented by figures.

➢ It is easy to read.

What is a Flow Chart?

Start / End

Data Input / Output

Evaluate condition / Question

Process / Task

Persistence criteria

Information flow

The Flow Chart is a graphical representation of the algorithm. The necessary steps to solve the

problem are expressed using images. It allows for easy reading.

Let's see some examples.

Example: Convert a number of meters to centimeters

Start of the algorithm.

End of the algorithm.

Data input: Enter the meters.

Processing: Calculate Cms = Meters*100

Data output: Result C is displayed

Start

Enter M

C = M*100

Display C

En
d

Flow Chart - Introduction

Every diagram begins with the Start point.

Data input: Entering the number of meters.

Processing: the calculation of meters * 100 is performed

Data output: the result C representing the quantity in centimetres is displayed.

End of chart.

Flow Chart - Introduction

Start

I = 10

I = i-2

Display i

En
d

I >= 2

No

Loop

Example: Show even numbers from 10 to 2

Start of the algorithm.

End of algorithm.

Data input: i = 10

Persistence criterion: as long as i is greater than or equal to 2

Data output: i

Processing: the value i is updated (by subtracting 2).

Let's look at another example of an algorithm that can be solved by a computer or device. You

want to list the even numbers from 10 to 2.

We have:

Start of flow chart

Data input: variable I is entered with value 10. We will discuss the concept of "variable" later.

Processing: the persistence criterion "as long as I is greater than or equal to 2" is indicated. If this

criterion (condition) is met then I is displayed, and the value is updated by subtracting two units. If

the result of I is lower than 2, the persistence criterion is no longer met and the end result is

reached directly.

It is important to note that unlike the "conditional diamond," the "persistence criterion"

continuously assesses the condition. This means that a loop is entered.

PSEUDOCODE

Pseudocode - Introduction

It is an informal language that allows you to:

What is it and what is it for?

➢ Focus on the logical aspects of the solution, without relying on the syntax of a

programming language.

➢ Easy error detection.

➢ Quick interpretation.

➢ Freedom for the programmer. Since it isn't a formal language, each programmer reaches

his or her best version.

➢ Specify "in words" the solution of a problem.

The purpose of Pseudocode is to allow the programmer to focus on the logical aspects without

having to rely on a programming language.

Anyone can easily interpret the steps an algorithm goes through.

Since it isn't a formal language, the pseudocode varies from one programmer to another.

Let's see some examples.

Pseudocode - Introduction

Example: Convert a number of meters to centimeters

Start

Enter M

C = M*100

Display C

End

START

Enter quantity M of meters.

Calculation: C = M * 100

Display: quantity C of centimeters

END

.

Pseudocode - Introduction

Example: Show even numbers from 10 to 2

Start

I = 10

I = i-2

Display i

End

I >= 2

No

Loop

START

i = 10

As long as i >= 2

Display i

i = i-2

End while

END

.

VARIABLES

Variables

What are they?

➢ A variable is a memory space.

➢ It stores a value that may change during program execution.

➢ It has a name and a data type.

Examples:

Age - Numerical (integer)

Name - Character

Date of birth - Date

Is it green? – Boolean (True / False)

When a program needs to store data in memory, it needs a "variable."

A variable is a location in the main memory that stores a value that may change during the course

of the program.

Every variable has:

Name

Data type

It can then be assigned a value. Before you can use a variable, you need to declare these concepts.

Unlike the variables, all the values in the pseudocode are referred to as "literals."

They may be:

• Full literals

• Real literals

• Character literals

• Date literals

• Logical literals

DATA TYPES

Data Types

DATA TYPES

➢ Simple data types are those that represent a unique single value, such as a number, a string, or a

Boolean value.

➢ Compound data types allow you to store a set of values, where each value is of a simple data type.

Examples of structures that can be created with this data type are arrays or collections. When

arrays have only one dimension, they are called vectors.

Simple

Compound or Structured

Data Types

➢ A vector is a set of data of the same type, such as: Integer, Character, Boolean, etc., ordered as a

row of N elements.

VECTORS

➢ Each element or data item is in one position (index). These indexes are positive integers. The index

of the first element will always be 0.

e.g.: myVector[2] has the value 12.

Data Types

➢ A collection is a structure that allows storing a set of elements, all of the same type.

COLLECTIONS

The main difference between a vector and a collection is how it is sized. When creating a vector you

have to define beforehand how many elements it will contain. In a collection, this is not necessary

and elements can be added as needed by adjusting the size automatically.

Collections also have methods (functions) that make it easier to work with them.

ARITHMETIC EXPRESSIONS

Arithmetic expressions

What are they?

An arithmetic expression is a combination of variables, literals and arithmetic

operators.

Arithmetic operators:

Sum - a+b

Subtraction - a-b

Multiplication - a*b

Division - a/b

Logical operators:Relational operators:

Greater than - a > b

Greater than or equal to - a >= b

Lower than - a < b

Lower than or equal to - a <= b

Equal to - a = b

No - not a

Y - a and b

Ó - a or b

There are different arithmetic expressions, and different "operators" participate in them:

• Arithmetic operators

• Relational operators

• Logical operators

Let's see the operators that participate in the example of the list of even numbers.

Arithmetic expressions

Example: Show even numbers from 10 to 2

Start

I = 10

I = i-2

Display i

End

I >= 2

No

Loop

Variables

I - Numeric 2

Literal (fixed values)

10

2

Arithmetic Operator Relational Operator

- >=

Arithmetic Expressions

I = I – 2

Tables of Truth

They allow you to evaluate more than one logical condition

a b a AND b

False False False

False True False

True False False

True True True

a b a OR b

False False False

False True True

True False True

True True True

a NOT a

False True

True False

When more than one logical condition is evaluated, the "Tables of Truth" are available.

• Operator “AND”: Both conditions must be met for the result to be True.

• Operator “OR”: If both conditions are met, or only one is met, then the result will be True.

• Operator “NO”: The opposite result is obtained (the negation of the value).

ALGORITHMIC INSTRUCTIONS

Algorithmic instructions

They are expressions that allow us to approach a language that is understandable by a

computer.

What are they and what are they for?

Data input.

Result output.

Processing (body of the algorithm).

“Algorithmic instructions” allow us to get closer to a language that can be understood by a

computer.

There are different instructions depending on the stage of the algorithm:

• Data input: The action of entering data into a variable is generally expressed by the word

"read". For example, the instruction "read M" or "enter M" requests the input of a value by

means of an input device (such as a keyboard), to be stored in the variable M.

• Processing or body of the algorithm

• Result output: It consists of displaying the value of a variable on an output device such as a

screen. In general, the action of displaying a variable value is expressed in the pseudocode as

"show M" or "display M."

Algorithmic instructions

Assignment

Start

Enter M

C = M*100

Display C

End

START

Enter quantity M of meters.

Calculation: C = M * 100

Display: quantity C of centimeters

END

.

Variable = Expression

They must have the same data

type.

It consists of assigning the value of an expression to a variable.

The expression assigned can be a variable, a literal, or a combination of variables, literals, and

operators.

It must be borne in mind that the variable and the result of the expression assigned must have the

same type of data. This means that for example, a declared variable of date type cannot be

assigned a numeric value or character.

Algorithmic instructions

Simple conditional

It allows evaluating whether a condition is met or not, and decide what action to take.

If (condition)

What is done if the condition is met

Else

What is done if the condition is not met

Endif

If Age >= 18 and Card = "Valid"

Msg("Can travel")

Else

Msg("Cannot travel")

Endif

Example:

Algorithmic instructions

The first condition that is fulfilled is executed, and no other.

Checking of cases

Do case

Case (Condition 1)

Case (Condition 2)

Otherwise

What is done if

no condition is met.

EndCase

Do case

Case Score >= 70 "Exonerated"

Case Score >= 60 "Regular"

Case Score >= 50 "Non-regular"

Otherwise

"The student must repeat the course."

EndCase

Example:

Algorithmic instructions

Iteration

It allows you to move from one value to another.

For (initial value) to (end value) [step 1]

EndFor

For i=2 to 10 [step 2]

Display i

EndFor

Example:

Algorithmic instructions

A loop is entered when the action is performed as long as a condition is met.

Loop

Do while (condition)

EndDo

I = 10

Do while i >= 2

Display i

i = i-2

EndDo

Example:

Videos training.genexus.com

Documentation wiki.genexus.com

Certificactions training.genexus.com/certifications

