
………..……………………………………………………

In this video, we will see how to define inferred attributes or formulas–which, by
definition, are not stored–as redundant and make them attributes of a database
table.

1

………..……………………………………………………

As we know, GeneXus automatically normalizes the database in Third Normal
Form, which implies that the only attributes that can be in more than one table
are those attributes that are a primary key and perform foreign key functions.

The rest of the attributes, which are called secondary, are stored in a single table
and determined by the primary key. If they are added to a different transaction,
GeneXus will infer them, retrieving their value from the table where they are
stored by means of the foreign key.

In addition, when we define an attribute as a formula in a transaction, it is no
longer stored and becomes a virtual attribute.

However, for performance reasons, in some cases we want to allow an inferred
attribute to be stored in the table associated with the transaction where it is
inferred, or a formula attribute that must perform many calculations and is time
consuming whenever its value is retrieved to be stored in its associated table in
order to obtain the value more quickly.

GeneXus allows storing an attribute that by default is not stored in a table,
defining it as redundant.

2

………..……………………………………………………

Referential redundancy

When we make an inferred attribute redundant, it is called referential
redundancy.

This approach to attribute redundancy was mainly motivated by the need to
improve performance.

Let's suppose that the table of tourist attractions had millions of records, and we
would like to retrieve those corresponding to countries whose name is
alphabetically later than a given value, and whose city name is later than another.

For optimization purposes, we know that sorting by filter attributes is the most
convenient option.

If we look at the navigation list, on one hand we see that the search is optimized in
terms of navigation filters, but note that two joins will have to be made since
CountryName and CityName are not in the Attraction table being run through.
However, if they were in the table...

3

………..……………………………………………………

Referential redundancy

...there would be no join to perform, so the performance would improve.

In both cases, we are informed that because there is no index for the order we
defined, we could notice performance problems.
The intelligence and capabilities provided will depend on the DBMS being used.
We know that DBMSs now are much more intelligent than in the past and have
strategies to optimize searches.
However, in some cases to solve a query it will be necessary to create a temporary
index that will be deleted after the query, and so on every time the query is
executed.

If this were the case, and we needed, precisely to avoid this continuous creation of
an index and its subsequent elimination, to create a user index for these
attributes...

4

………..……………………………………………………

Referential redundancy

...we will only be able to do it if both are in the Attraction table.

5

………..……………………………………………………

Let’s see in GeneXus how to declare redundancy and its effects.

We have the Attractions transaction that infers, as usual, the values of
CountryName and CityName from the foreign keys. In fact, if we look at the
structure of the attractions table we can see that these attributes are not present,
and only the foreign keys are there.

6

………..……………………………………………………

We already have some data loaded at runtime: two countries with their cities.
Let's pay special attention to 1, France, with its two cities Paris and Nice. Then we
see that we have 3 attractions in France: two in Paris and one in Nice.

7

………..……………………………………………………

If we look for the data of the tables in SQL Server... we see that in the Attractions
table there are only the foreign keys.

8

………..……………………………………………………

Well, now in Attraction we want to define the two inferred attributes as
redundant. To do so, in the editor of the transaction structure, we add this
column...

9

………..……………………………………………………

... which provides check boxes to indicate which attributes of the transaction
structure we want to make redundant. It only offers us to make the inferred
attributes redundant. If there were formula attributes, it would also offer us to
make them redundant, as we will see.

We are going to select both, because we want both to be redundant in the
Attraction table.

10

………..……………………………………………………

Let's save. We see that the attributes have been added to the table structure and
it is indicated in this way that they are redundant.

11

………..……………………………………………………

If we now execute it, clearly we will have to reorganize the Attraction table to add
those attributes that so far were inferred but now we want them to be stored.
Note that it is indicated where their values will be taken from.
Well, we expected this. But, what are these three internal procedures that
GeneXus will create?

12

………..……………………………………………………

Let's start by examining the last one. Its name is AttractionLoadRedundancy. Here
it says that it is the procedure for loading the redundancies of the Attraction table.
And it tells us which redundant attributes it has to load. What this procedure will
do is to run through the entire table of attractions. For each one, it will go to
Country to find the value of the CountryName attribute and store it in the
redundant attribute of this Attraction table. Also, it will go to the cities table to
find the value of the CityName attribute and store it in the new redundant
CityName attribute in this Attraction table.
In sum, it must automatically execute this procedure after reorganizing the
Attraction table so that the redundant attributes are loaded with the
corresponding values.

13

………..……………………………………………………

Ok, but what about these two procedures?

If we look at the first one, we see that it is a procedure to update the redundancies
of the Country table. We know that the CountryName attribute of this table is
redundant in Attraction. This means that if we execute the transaction and change
the name of a country, this change should also be made for all the attractions that
correspond to that country in order to keep the redundancy up to date. This is
what this procedure will do, which will be invoked transparently every time the
user changes the value of CountryName for a CountryId through the Country
transaction (or its business component). Here we can see that the procedure
receives as parameter the value of the primary key to instantiate that record; then
it runs through the table of attractions filtering by that value, and for each
attraction it updates the CountryName in that table.

14

………..……………………………………………………

What about this other procedure? The same goes, but to keep the redundancies
relative to the cities table updated. That is to say, when the name of a city in a
country is modified from the Country transaction, this procedure will be
automatically and transparently executed. The country ID and the city ID will be
sent to it by parameter, this table record will be accessed, and for each matching
Attraction record, the value of the redundant attribute CityName will be modified
in Attraction.

These procedures will then be created in this reorganization, and the logic we just
explained will be added to the transactions.

We reorganize.

15

………..……………………………………………………

Now let's see the table in SQL Server. The redundant attributes were added and
assigned their corresponding value.
We are now going to change the name of the country France to its name in
Spanish, Francia. We will do it through the transaction.
Let's look at the table data... the name in the transaction table has changed... and
let's see what happened to the redundant attribute... just as we expected, it was
updated.
Likewise, if we are going to modify the name of a city, for example Nice, writing it
now in Spanish (Niza)... we see that in the cities table it has been changed
obviously, and now in the Attractions table... too.

That was due to the modification made through the Country transaction.

16

………..……………………………………………………

Let's see what happens if we do it through a procedure... We have a web panel for
the user to enter a country ID, and when pressing the button we invoke a
procedure that receives that ID and goes to the Country table to change the value
of the CountryName attribute for the country with that ID to “Something.” Let's
run it to test it.

We choose the country with ID 1, which is France. In the Country table, its value
was indeed changed to the one assigned by the procedure. But now let's see if the
procedure kept the redundancy in Attraction up to date. No, it did not.

17

………..……………………………………………………

CountryUpdateRedundancy

CountryCityUpdateRedundancy

GeneXus invokes those procedures that we saw whose names ended in
UpdateRedundancy only when the modifications are made through the
transaction (or the business component, logically). It doesn't invoke them when
the modifications are made in any other way.

So, we must be careful. In case of modifying attributes that are redundant in other
tables through another way than the transaction or the business component, the
developer will be responsible for keeping the redundant attributes up to date.
GeneXus won’t do it.

18

………..……………………………………………………

Formula redundancy

The other case of redundancies that we had already mentioned was that of
formulas. In this example, we see that in addition to offering redundancy of the
inferred attributes, it also offers redundancy of the two formulas defined for the
transaction: the horizontal one that applies a discount to the price of the flight
according to the discount percentage set by the airline, and the aggregate one
that counts the number of seats on the flight.

Defining these formulas as redundant will add the attributes to the table. In
addition, obviously, in the reorganization GeneXus must also create a procedure to
load them with the corresponding values.

19

………..……………………………………………………

Formula redundancy

That is, a procedure where for each record in the Flight table it will trigger the
calculation of each formula... for FlightFinalPrice it will have to go to Airline to find
the value of AirlineDiscountPercentage, and store its value in the redundant
attribute; for FlightCapacity it will have to count the associated records in the
FlightSeat table, and store the result in the redundant attribute.

20

………..……………………………………………………

Formula redundancy

If we also define, for example, AirlineName as redundant–that is, a referential
redundancy–its value would be loaded into the table in this same procedure.
That’s why the name of the procedure is always the concatenation of the name of
the table where the redundancies are, in this case Flight, and LoadRedundancy.
That is to say, in this procedure all the redundancies of the table will be loaded:
the referential ones and those of formulas.
And it will be the procedure automatically invoked in the reorganization, after the
new attributes are added to the database table.

21

………..……………………………………………………

Formula redundancy

Let's focus only on the formulas again. Of course, once they have been made
redundant, when information on flight price or capacity is needed, the formula will
not be triggered again, but the stored value will be retrieved, and that is exactly
the point.

Hypothetically, if we had to run this list millions of times, and if there were
thousands of seats for each flight, calculating the FlightCapacity formula every
time could become a performance problem. Having it redundant saves us from
having to make the calculation for each query. There is only the cost of the
calculation to load the redundant attribute the first time, and to keep it up to date
afterwards.

For the horizontal formula of the example, the usefulness of defining it as
redundant doesn't seem too clear, at least in terms of performance, unless we
need, for example, a panel or web panel where the user wants to filter the flights
shown in a grid by flight price.
The case would become more interesting if the horizontal calculation involved
many tables of the extended one. Or, even more so, if it were a horizontal formula
of the kind that is solved by invoking a procedure that does perform a complex
calculation.

22

………..……………………………………………………

Formula redundancy

If there is a clear advantage to redundant formula attributes, what is the
disadvantage?

That they should always be kept up to date, and that update has a cost. If the
value of FlightPrice is changed through the Flight transaction (or its business
component) the horizontal formula involving it will be triggered again as usual. The
same happens if a line is added or deleted: the FlightCapacity formula is triggered
again. In both cases, its value is stored in the redundant attributes and the
developer doesn't have to worry about doing it.

However, as in the case of referential redundancies, if the modification is done
with a procedure, as in these examples, GeneXus will do nothing. Here the
developer will have to worry about updating the redundant attributes by adding
code.

23

………..……………………………………………………

Formula redundancy

What happens if the user enters the Airline transaction and modifies the discount
percentage for an airline? (or does it through the business component).

In Flight the redundant formula FlightFinalPrice depends on that value, so the
redundant value stored for all Flight records belonging to that airline should be
updated.

GeneXus will create in the reorganization the procedure whose name is the
concatenation of the table name, in this case Airline, and UpdateRedundancy, as it
did with referential redundancies.

24

………..……………………………………………………

Formula redundancy

This procedure will be invoked from the Airline transaction by passing it the ID and
the procedure will access the corresponding record. Next, it will run through the
Flight table filtering by that airline and trigger the FlightFinalPrice formula again,
storing its result in the table.

All this implies a performance cost. Therefore, a very careful assessment should be
made of when it is convenient to make a formula redundant and when it is not.

25

………..……………………………………………………

Formula redundancy: limitations

For the moment, the maintenance of redundant formulas has some limitations.

For example, when we have these three related transactions, where the Flight
transaction records the generic information of a flight, such as its price, but the
FlightInstance transaction is the one corresponding to the actual flight on a given
date. In it, the price of the actual flight is obtained with a formula that takes into
account the list price of the flight according to the date.

And then we have a transaction to record flight invoicing. The lines record the
flights for which tickets are being purchased, and how many tickets for each one.
Then this formula calculates the price for each line, using the inferred formula
attribute of FlightInstance, which in turn is a formula, as we said.

Suppose we want to make this formula redundant in the InvoiceFlightInstance
table. If we only make it redundant...

26

………..……………………………………………………

Formula redundancy: limitations

...the procedure for loading the redundancy will be handled correctly, by going to
the InvoiceFlightInstance table and triggering the horizontal formula for each
record, and storing it.

However, redundancy update procedures will not be created.

27

………..……………………………………………………

Formula redundancy: limitations

What do we mean?

That if the user executes the FlightInstance transaction and changes, for example,
the value of FlightInstanceDate (suppose that from a lower date than this to a later
one), since the horizontal formula will be triggered again and its value will be
changed, we would expect the transaction to invoke a procedure–
FlightInstanceUpdateRedundancy–that will go to the FlightInstance table and
update the corresponding redundancies. But it won't.

Similarly, we would expect that if the user changes the value of the FlightPrice
attribute through the Flight transaction there would also be a
FlightUpdateRedundancy procedure that goes to the InvoiceFlightInstance table to
recalculate and re-store the redundancies of the formula attribute that should be
changed when the FlightInstancePrice is changed, when applicable. It won’t do it
either.

28

………..……………………………………………………

Formula redundancy: limitations

But what if we also make the involved horizontal formula redundant?

29

………..……………………………………………………

We will see when reorganizing that in addition to reporting the changes in both
tables to add the two formulas as redundant, and the two procedures for loading
the redundancies, two UpdateRedundancy procedures will be created.

The first one that is triggered from the Flight transaction when the price is
changed and will update the first redundant formula in FlightInstance. Then, from
it, the second one in InvoiceFlightInstance.

30

………..……………………………………………………

The second procedure will be executed when the flight date is changed from the
FlightInstance transaction, and will update the redundant attribute in
InvoiceFlightInstance.

31

………..……………………………………………………

Formula redundancy: limitations

So, if we have a formula whose calculation involves another one, in order to
maintain its redundancy automatically, we need to define the inner formula as
redundant as well.

32

………..……………………………………………………

Formula redundancy: limitations

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1000

1 04/04/2022 950

FlightInstanceDate: 03/03/2022

FlightInstancePrice: ?

FlightId: 1

But there are more limitations. For example, in most cases aggregate/select
formulas cannot be maintained through these update procedures.

If we maintain in Flight a list of flight prices by date, for example, in FlightInstance
we will have to calculate the price of a particular flight according to the price that
corresponds to the actual flight date. That is, we calculate the price according to a
max formula.
So, with this data, if we are entering an instance of flight 1, with this date, the max
formula will be left with this record...

33

………..……………………………………………………

1000

Formula redundancy: limitations

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1000

1 04/04/2022 950

FlightInstanceDate: 03/03/2022

FlightInstancePrice:

FlightId: 1

LIST

... so it will return the value 1000 for the flight price. If it were being printed in a
list, 1000 would be displayed.

34

………..……………………………………………………

1000

Formula redundancy: limitations

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1000

1 04/04/2022 950

FlightInstanceDate: 03/03/2022

FlightInstancePrice:

FlightId: 1

LIST

1500

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1500

1 04/04/2022 950

FlightPriceUpdateRedundancy?

If later on the user goes to the Flight transaction and changes 1000 to 1500 in the
line corresponding to this record, since the formula is virtual, when the list is
executed again, the max will be triggered and 1500 will be listed.

35

………..……………………………………………………

1500

Formula redundancy: limitations

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1000

1 04/04/2022 950

FlightInstanceDate: 03/03/2022

FlightInstancePrice:

FlightId: 1

LIST

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1500

1 04/04/2022 950

FlightPriceUpdateRedundancy?

But what if we make the max formula redundant? We would expect that a
redundancy update procedure would be created for the FlightPrice table, so when
the value of FlightPriceValue is modified through the Flight transaction, the
FlightInstance table would be accessed looking for which records would be
affected by the change to modify the value of FlightInstancePrice. But when trying
to figure out which records would be affected, we see how difficult it is to
determine this.

Therefore, in this case, GeneXus will not create this redundancy maintenance
program. We see this clearly when we define the attribute as redundant and look
at the reorg report.

36

………..……………………………………………………

It will only create the redundancy load procedure, but not the update procedure.

So we recommend to always read this impact analysis report to find out which
redundant formulas will be maintained and which ones will not.

37

………..……………………………………………………

Formula redundancy: limitations

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1000

1 04/04/2022 950

FlightInstanceDate: 03/03/2022

FlightInstancePrice:

FlightId: 1

LIST

1500

FlightId FlightPriceDate FlightPriceValue

1 01/01/2022 800

1 02/02/2022 1500

1 04/04/2022 950

As a side note: if the user accesses the FlightInstance transaction and changes the
value of FlightInstanceDate, of course the redundant attribute will be kept up to
date. The reason is that inside the transaction the formula will be triggered as
usual and its value will be stored. The problem occurs when an attribute involved
in the formula calculation is modified from another transaction, not the one of the
formula. In this case, from the Flight transaction.

38

………..……………………………………………………

Rebuild redundancy

If we needed that attribute to be redundant anyway, knowing that the redundancy
will not be automatically kept up to date from Flight, we can always invoke the
redundancy loading procedure created by GeneXus.

If we look for the files in the environment directory, we will find the redundancy
loading procedure for each table with redundant attributes. The one that ends
with LoadRedundancy; table name: load redundancy. In the last case, the
flightinstanceloadredundancy, which we can invoke as a call to an external
procedure.

In addition, even though it is not listed in the impact analysis report, GeneXus
creates a procedure named gxlred, for GeneXus Load Redundancy, which invokes
each of the LoadRedundancy procedures of each table with redundancies.

So if at any time we want to make sure that all redundancies defined in the KB are
updated, we can, for example, invoke this program from an event.

39

………..……………………………………………………

Other limitations in defining redundancies

Subtypes cannot be defined as redundant

To define as redundant a formula that is already a formula, we must first define that other formula as redundant

To change the definition of a formula that is redundant, you must first remove the redundancy

Redundant aggregate formulas that add more than one level of nested redundant formulas will not be properly maintained

There are other limitations for defining redundant attributes that must be
considered.

Some of them are listed here and you can read more about them in the wiki.

40

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

41

