

Many database managers (DBMSs) have failure recovery systems that ensure the
database is in a consistent state when unforeseen events such as power cuts or
system failures occur.

Database managers (DBMS) that offer transactional integrity allow establishing
Logical Unit of Work (LUW) that, in fact, correspond to the database transaction
concept.

We can see that a Logical Unit of Work (LUW) is defined by the set of operations
performed between two Commit commands.

GeneXus, by default, includes the COMMIT sentence in the generated programs
that are associated to transaction and procedure objects.

 In procedure object: authomatic COMMIT at the end of the
 source program.

 In transaction object: authomatic COMMIT at the end of each instance
 immediately before the rules with an AfterComplete.

GeneXus offers a property for each transaction and for each procedure in order to
define if you wish the generated program perform COMMIT or not.

The name of the property is Commit on Exit and its default value is Yes (this is why
all transactions and procedures perform COMMIT by default).

What reasons could there be for not performing a COMMIT in a transaction or procedure?

To personalize a Logical Unit of Work (LUW). That is, we may need to expand a Logical Unit of Work
(LUW) so that several transactions1 and/or procedures form a single Logical Unit of Work (LUW).

Example (shown above):

Transaction “X” invokes procedure “Y,” and we want both objects to form a single LWU. The transaction
updates certain records, and the procedure updates other records, and we want that whole set of
operations to form a single LUW (to guarantee that, if a failure occurs, either the whole set of updates is
performed on the database, or no update at all).

To achieve this, we can remove the COMMIT from the procedure and allow it to be performed in the
transaction (when returning from the procedure to the transaction, so that it is executed at the end of all
the operations); therefore, we would set the value of the procedure's Commit on Exit property to No
and we would leave the transaction's Commit on Exit property set to Yes, the default value. But, in
addition, it is vital that the procedure is invoked before the COMMIT is performed in the transaction
(since both objects should form a single LUW and, in order for this to be possible, the COMMIT must be
performed in the transaction when returning to the procedure); therefore, the invocation to the
procedure must be defined in the transaction, with a triggering event occurring before the COMMIT
(depending on the requirements and on whether it is a single-level or multi-level transaction; either
AfterInsert, for instance, AfterUpdate, AfterLevel Level 2nd Level Attribute or BeforeComplete would do,
but not AfterComplete).

There is no single way of personalizing a LWU. What is important here is analyzing which object can
perform a COMMIT (there could be more than one possibility) and, once the object has been chosen,
determining what we need to invoke and what the appropriate times to do that are, depending on
whether the COMMIT has been performed or not.

1 1 In Web environments, this has an important restriction: if a transaction is invoked from another
transaction, the Commit performed by one of them does not apply to the records
inserted/modified/deleted by the other one. That is, the Commit of each transaction is only "visible" on
the records performed by that transaction, and not on the records performed by the other one;
therefore, two different transactions cannot be included in the same LUW. In this case, no
personalization is possible.

Example (end user decides whether to execute Commit or Rollback):

Suppose we invoke from a web panel (in a certain event) several
consecutive procedures. The Commit on exit = No property is
configured in all of them.

The next sentence after invoking the last procedure, asks the user if he
confirm; depending on the answer the user gives, either the COMMIT
command or the ROLLBACK command will be executed.

