

Video filmed with GeneXus X Evolution 3

P
ag

e1

 Offline Mode

Welcome!

My name is Martin Torrado and I work for Artech’s support team. In this webinar, we will talk
about offline SD applications for the new version of X Evolution 3.

So, let’s start from the basics, that is: what are offline applications?

Offline applications are partially connected, autonomous applications.

And what does this mean?

This means that when I’m using my application, on my device connected to internet, when
that connection is lost, I will still have my application running. And when I finally recover my
connection to internet, a synchronization process with the centralized server’s database will
take place.

Therefore, we could say that these applications function at all times, regardless of whether we
have a connection or not, and they access local data with the possibility of executing complex
logic on the device’s side.

Video filmed with GeneXus X Evolution 3

P
ag

e2

Why do we have this type of applications?

As a result, exactly of what we said, because we may not always have internet connections
available to us. So, my application will continue to function even where I cannot get an
internet connection.

We then say that our application are more complete and functional. And most of all –as I
pointed out in underlined bold letters on the ppts as very important– because we may solve a
wide range of new scenarios where offline applications, instead of something desired, become
a system requirement.

And we have thousands of examples of this. For instance, sales force applications where my
sales cannot depend on whether my device is connected to the Internet or not.

So far then, we have found out what offline applications are and why we use them.

Video filmed with GeneXus X Evolution 3

P
ag

e3

Now I would like to refer to the Architecture…

And the best way to do it is compare against a model we already know about: the model of
architecture of SD applications in XEv2.

As you will recall, what we had up to the XEv2 was our Devices with an installed application
that was connected to our centralized server’s database through a layer of rest services, to
obtain data and execute “Insert, update, delete” on the server’s side.

That was basically the architecture we had been working with up to the XEv2 version.

And though many things remain the same in the architecture of XEv3, we will now have a
database on the client side.

Video filmed with GeneXus X Evolution 3

P
ag

e4

An sqlite database, already pre-installed in both Android and IOS, is a database engine that we
have on the client side due to the fact that we will have more data processing requirements on
the client side.

This means that a much more complex logic will be executed on the client side, and we will
have to generate native code, which will be JAVA in Android and Objective-C in IOS.

We should also mention the Start / Refresh / Load events, which previously -in online
architecture- were executed on the server side, are now executed on the client side by
accessing local data.

Video filmed with GeneXus X Evolution 3

P
ag

e5

User events continue to be interpreted, with the exception that when offline applications call
an offline object, they will do it locally without the need to go to the server to execute it.

Another outstanding aspect in this architecture is that both the client database and the server
database will have to remain consistent with one another, through a process called
“synchronization process” which we will see in detail further ahead.

Now let’s see how we do this in GeneXus.

We have a property called Connectivity Support, available for all SD objects, which includes
three options:

 Online

 Offline

 Inherit

Video filmed with GeneXus X Evolution 3

P
ag

e6

What do these three options imply?

Online is the default option for SD main objects, and the way we have been working so far,
including the XEv2, where our application is fully connected. The Inherit property is included
by default in all SD objects that are not main objects. This means that they will inherit the
behavior of the parent calling it. And the offline property is the one we are most interested in
today.

What happens when I set an object’s property with connectivity support offline?

Suppose we have an application for an event, and a dashboard (set up as main) for which I set
up the property connectivity support offline.

What happens immediately afterwards? The next time I execute or compile, a new object
called Offline DataBase Object will be created.

It will determine the tables that go to the client’s database, and also the data taken for
synchronization, because it is obvious that the local database will not be the same as the
server database but rather a reduced version of it.

So, how do we determine the tables that will be taken to a client’s database?

I brought this example to make the concept clear. And in line with what we just saw, it is an
application for an event.

Video filmed with GeneXus X Evolution 3

P
ag

e7

I have a dashboard calling a Work with sessions, a Work with speakers, and a Work with
tweets.

So, what tables will end up in the device’s internal database?

For my dashboard, I define Connectivity Support offline. Since, as we said, my dashboard is an
SD main object that has the property connectivity support online by default, I change it to
offline. I indicate that, as of now, I want the application to function without connectivity.

As we know, we have the object Work with Sessions, speakers and tweets. And the property
that these three panels will bring by default will be Inherit, so the behavior of the calling
parent will be inherited, in this case the dashboard with the offline property.

Video filmed with GeneXus X Evolution 3

P
ag

e8

Therefore, they will inherit that offline behavior …

… and they will be added to the tables they access and to the device’s database, that is to say
that the addition will include the sessions, speaker and tweets tables.

And what if I want tweets to only be viewed with internet connectivity so that users always
view updated tweets with internet connection?

In that case then I will need to act on the connectivity support property, and set online
connectivity support for the Work with SD panel.

By doing this I am determining that tweets will only be viewed with connectivity. So the tables
taken to the device no will be session and speaker only.

Video filmed with GeneXus X Evolution 3

P
ag

e9

We should also point out here that when a table has a Foreign Key to another table, the table
referenced will also be taken to the device.

So, let’s now see the navigation of this Database offline object.

As you can see, there is a Synchronize event for each table involved. So for each of those
events, which are basically For eachs to the table, we will see the conditions applicable.

Conditions are used like any other GeneXus object, applied to tables in order to know which
data is taken to the device.

And why are these conditions applied?

For one thing, there may be security reasons where I do not want a user to view all records,
and also capacity reasons relative to the device’s memory. I cannot take all the records of the
server’s database to my device because there may be thousands of records and my device’s
capacity may be exceeded.

Due to those two reasons, we will be applying filters. As we saw in previous ppts, we can filter
by tables, differentiating or discriminating the tables we want taken from the server’s
database to the device’s database. But, as we will see now, we can also filter by records.

And how do we do this?

Video filmed with GeneXus X Evolution 3

P
ag

e1
0

We add a condition. Suppose, in the same example we had, that I only want speakers in my
event that I consider important to be taken to the device.

That is: VIP speakers = true

So, on the CONDITIONS tab I add that condition. This will add a Constraint to the object’s
navigation that the For each will continue doing on the speakers table. And also, I add another
Constraint where VIP speakers = true.

Something important to point out is that we do not have reorganizations, and the database
does a create every time we modify the data model.

Now let’s see something about data synchronization.

This synchronization will have a process for sending data from our device database to the
server, and a process that receives data from the server to the device database, that is, the
client database.

Video filmed with GeneXus X Evolution 3

P
ag

e1
1

So, starting with the data reception process, there are two ways for synchronization:
Automatic and Manual.

In automatic synchronization we have the following properties at the level of the offline
Database object.

The Data Receive Criteria property, by default, will come in an On Application Launch, but
there is also the After Elapsed Time property. And there is the manual way which we will see
further ahead.

What happens when I set Data Receive Criteria with the On Application Launch property?

What will happen is that I will be receiving the data every time that the application does a
Launch, that is, every time that I pick up the application when the minimum time between
receives has elapsed, which is the second property, that is currently set at 600 seconds – a 10
minute period will pass. When I open the application, if 10 minutes have elapsed, then the
application will be data Receive.

Video filmed with GeneXus X Evolution 3

P
ag

e1
2

What happens when I set the Data Receive Criteria property in After Elapsed Time?

This property is supplementary to the other one, so a data receive will be done every time that
600 seconds have elapsed from the last time that I received data, so it supplements the other
property.

And this data receive may take place in either one of two ways, which is the last property you
see on screen, the Data Receive Granularity. It may be received by Row or by Table.

And what is the difference between them?

By Row, I will receive in the client database only the server data modified, that is the modified
rows. By Table, I will be receiving the whole table every time that there is a change made. The
table will be deleted on the client side for the whole table to be received again.

This implies advantages as well as disadvantages. With by Row the advantage is that the data
transfer from server to client is small, because only modified data is sent. The disadvantage in
this is that there is much processing on the server’s side, since it has to search for the data that
was modified.

And there is the opposite situation in by Table. There is little processing on the server’s side
because the whole table is sent upon every change made, but there is a lot of data transferred
from server to client.

And, as we mentioned, there is also the manual property.

What will we decide in the Data Receive?

When we set up the property as Manual, the second property we had before, called minimum
time between receive, disappears because the waiting time between receives does not make
any more sense, since I will be executing them manually.

How is this done? As shown on screen, with Synchronization.Receive.

Video filmed with GeneXus X Evolution 3

P
ag

e1
3

When I set the property as automatic, that is, with Application Launch or After Elapsed Time,
there is also the possibility of using manual synchronization. I will be able to use, also, the
Synchronization.Receive in user events, some buttons, etc.

This refers to receiving data.

Now let’s see the Data Send, to send data from the local Database from Devices to the server
database. To do this we have the property at the offline database object level, called Send
Changes, which includes three options:

The default option is When Connected, which sends data as soon as I get my device connected.
I work in offline mode, and when my connection occurs, that data is sent to the server
automatically.

There is also the Manual option which validates the data receive. Using the
Synchronization.Send method I will send the client data, when I consider appropriate at the
programming level, to the server. I could have the When Connected option set up and use the
manual method of my programming anyway with this Synchronization.Send method.

And the third option is Never, for when we don’t send client data to the server. A case where
this property is used is when we have a personal finance application that includes sensitive
data that I do not want on the server.

Before we finish this presentation I would like to mention two things.

One is that when we create an offline application in GeneXus we install it on the Device, and a
table called GXPendentEvent will be created, where all modifications made offline will be
saved, in the same order in which they take place. When we obtain internet connection, those
modifications are replicated in the same order in the server database, which makes the
databases consistent with one another.

Additionally, we will have associated to each change, a state which we will be accessing
through the Synchronization Event Api – an API that we make available to check possible
errors in sending data and to make the necessary decisions in each case.

So we could say that this API enables us to make decisions and manage errors relative to
synchronization.

The other thing I would like to mention is that everything to be synchronized in my offline
applications must be done with business component, and the News and For eachs are not
considered.

Video filmed with GeneXus X Evolution 3

P
ag

e1
4

Having made clear these two aspects, we can now move on to consider conflicts in
synchronizations.

We will consider a particular case where we have two devices with the same application
installed, both disconnected from the internet for the moment, and a centralized database in
the cloud with no data to begin with.

So, Device1 does an insert of country Uruguay and of country Brazil with their corresponding
cities - Porto Alegre and Montevideo – in the country tables and in the city tables.

We must point out that both the CountryID and CityId keys are autonumbered. This is
important in this particular case where we will manage conflicts.

As we said, Device1 does that insert of Uruguay-Brazil, and Device2 does an insert of Argentina
and Paraguay in the same tables, also with tables CountryId and CityId autonumbered.

What happens when those two devices are connected to the internet and must be
synchronized with the centralized server database?

Video filmed with GeneXus X Evolution 3

P
ag

e1
5

Suppose that Device2 is the first one connected and synchronizes its data with the server.
Then, it will send “Argentina-Paraguay” “Buenos Aires-Asuncion” to the server’s tables.

When Device1 tries to synchronize there will be a conflict because it will be trying an insert in
the same tables with the same ID. Therefore, when it calls for Uruguay with CountryID1, it will
find that CountryID1 is already Argentina, as entered by Device2.

So, how is that conflict solved?

Video filmed with GeneXus X Evolution 3

P
ag

e1
6

The server will solve this automatically. Since the keys are autonumbered, it continues adding
those numbers, taking Uruguay and Brazil and assigning the value following the last one
existent. Because Uruguay 1 and Paraguay 2 already existed, it will change the ID of Uruguay to
make it Uruguay 3, and the same applies to Paraguay 4.

The interesting thing here is that modifications may also be done in cascade, that is: Uruguay
with ID3 and Brazil with ID4 are also modified on the City table. Because it has foreign key,
they are modified there for consistency.

And what about the data I had on my device (Uruguay1 and Brazil2)?

What I does here is a backwards modification. After the modification on the server is ready
and consistent, it makes the modification in Devices, making the whole environment
consistent, with the final values you now have on screen.

This is how conflicts with autonumbered keys are solved.

Now we will go into some considerations regarding Prototyping and GAM

Video filmed with GeneXus X Evolution 3

P
ag

e1
7

In regards to prototyping, I would like to say that KBN will not be available for testing offline
applications.

Since the KBN only interprets metadata, and we will be generating our offline applications and
complex logic which imply the generation of programs in native code -JAVA in Android and
Objective-C in IOS–, the KBN will not be applicable for executing this type of logic and
therefore not applicable for testing offline applications.

We will then have to compile and execute those applications on the devices.

Regarding the GAM, I wanted to mention two things: one is that credentials are kept on the
server due to security reasons. We do not take user credentials to device databases. And as a
result, the other thing to mention is that the login is done online only. I will only login to my
application when I am connected to the internet. In third place we could say that user
authentication may be done only online, but if we lose the connection after the authentication
takes place, we may continue to access our applications screens offline.

And one last thing to mention is how we convert the applications we used to work with in XEv2
(online applications) into offline applications in XEv3.

Video filmed with GeneXus X Evolution 3

P
ag

e1
8

As we mentioned before, what we must do is change the connectivity support property to
offline. By default, this property is set as online. After we change it to offline we will select the
way in which we want the data to be sent and received. As we saw in previous screens, we
have the options of automatic or manual, and whether it is by row or by table. We have to set
up those options and also remember that is necessary for all changes we want sent to the
server database must be done with Business Component.

And bearing that in mind, also apply filters. As you may recall, we can decide which tables we
want sent to the device’s database, and from those tables, which records we want sent to us.
So we apply those filters and then do a Rebuild all of the main object. We must also remember
that there are some non-compatible DataTypes.

There are some examples like MailMessenger, Cookie, ExcelDocument, and others. You have
further information at the wiki, but the main conclusion now is that changing our online
applications to offline is quite easy to do.

This is about all I wanted to transmit to you today regarding offline SD applications. I welcome
you all to download Evolution 3, test it, and benefit from all the advantages we showed here.
And you also have my email for any queries you might need to make.

Video filmed with GeneXus X Evolution 3

P
ag

e1
9

