




In this video, we will discuss authentication and access control in GeneXus

mobile applications using GAM.



Native mobile applications installed on devices consume REST services from the Web

server. These applications create a user interface that is also based on resources in

addition to metadata.

Given this architecture, it is important to have a security mechanism in place to prevent

these types of actions from being performed by unauthorized users.

The way to do this, of course, is by using GAM.

As in web applications, security is automatically added to the mobile application

through the Enable built-in security property. This security can be implemented through

Authentication or Authorization.

Let's look at it in more detail.

4



As in web applications, a possible scenario in native mobile applications is that all

native mobile objects are private.

By configuring our application with built-in security level to Authentication, we will make

all objects require the user to be logged in.

Now let's see how the authentication types behave and work in mobile applications.

Let's start with the Local type.

This authentication type works just like web applications, where user credentials are

stored in GAM's “User” table.

As we have already mentioned, the password is not stored. Instead, a password hash

is stored using a unique key for each user and the SHA-512 algorithm.

Then, a POST request is simply made from the client to the server, where in this case

the client corresponds to the mobile device.

In the low-level background, this and all GAM authentication methods use the OAuth

2.0 protocol.

5



Here we can see an example of the POST request we mentioned.

The request is made to our application URL, followed by /oauth/access_token.

As parameters, we include the typical client_id and client_secret, grant_type and

scope, and finally the username and password.

If the request is successful, we should receive a JSON like the following, with all the

access data and user identifier.

This can be useful for testing your own authentication types, using any API testing tool.

6



In previous topics, we reviewed the Login mechanism for web applications. Now let's

see how this works in mobile applications.

To do so, we will focus on the GAMSDLogin object, which is included in the reference

implementations provided by GAM.

In this case, local login is done through the External Object GeneXus.SD.Actions and

its login method.

In the background, once the session is started, the information is stored in the device,

but in encrypted form, saving a security token using the KeyStore (in the case of

Android) or Keychain (in the case of iOS).

This Login method that belongs to Actions is overloaded, so it allows including the

additional parameter &LoginExternalAdditionalParameters as we just saw in the

external Login cases.

Let's address this with another example in detail.

7



That parameter we mentioned must correspond to the object called in the same way,

which looks as follows.

Following is an example of use of this overload in the SD Login method.

The LoginExternalAdditionalParameters object allows establishing the GUID of the

Repository we want to connect to. This is useful in MultiTenant applications.

When we set a value for the Repository property of the

&LoginExternalAdditionalParameters parameter, the connection to that Tenant (in

particular, to that client) can be established, represented by a Repository and its GUID.

In addition to this option that we use, we have others that can be the Name of the

authentication type, and a list of dynamic properties Id and Value that the application

might need.

8



Going back to manual tests, we can replicate the login request that we saw before, but

this time adding these additional parameters that we mentioned before.

To do so, we add the additional_parameters parameter to the request, and in it we

include the data we want to add to the request.

In this case, note that the name of the authentication type we want to use is included,

in addition to two properties that we mentioned before (Id, Value); it is the name of a

company and a branch.

9



As we already saw in the Authentication topic, we can use Google as an Identity

provider for login.

Let's see a configuration for this.

In Google's website, we need to create a client application and get the client's

information and secret. The URL of this site is as follows.

First, we go to the API and Services section and click on the Credentials section,

selecting “OAuth Client ID.”

Then we select “Web Application” in the Application Type.

Once this is done, we need to change the redirection URIs. There we can specify the

full URI of our application, including /oauth/gam/signin, as shown in the image. The

latter is important and applies regardless of whether our application is Java or .NET.

The full URL of the application must always be specified, including the virtual directory,

followed by /oauth/gam/signin.

After confirming this, we will get our client information and finish on this side.

Now let's configure our application from the GAM back end.

For that, we create a new Google authentication type and complete the information

with that provided by Google.

In this step, it should be highlighted that in the Local site URL field we only need to

enter the domain of the server running the application. It is not necessary to enter the

10



complete URL of the site, but if you do so, do not include "/servlet" in Java.

At this point, we already have the Google and back-end side configured. But

since this is a mobile application, we need a different logic in the application

Login so we have to add an event in it that authenticates with Google.

This logic now uses the LoginExternal method of the External Object Actions,

and as first parameter it is indicated that it is a Google authentication type

through the GAMAuthenticationTypes domain.

Then the username and password will be ignored. Lastly, we have

LoginExternalAdditionalParameters, with which we can provide additional

information to the login that is useful to us. In this case, we define the name of

the authentication type.

This is useful if we have more than one type of Google authentication in the

repository, and with this name we will be able to select the one we want.

Otherwise, we can make the login call without using this parameter.

Later on, we will see this attribute in more detail.

This is the end of the authentication process with Google.

10



Now let's look at the case of Facebook.

In the introductory course, we showed one type of authentication with Facebook, so we

will not repeat this. You can see how to do this in that course or on the GeneXus Wiki.

As in the case of Google, once we have created and configured our client and

authentication type in the GAM backend, we need custom logic in the application.

In this case, once again we add a new event with the following.

The explanation is the same as for Google, with the difference that now in the first

LoginExternal parameter we indicate that the type is Facebook.

11



Authorization.

In the case of SD panels, GAM checks if the user has permission to execute them. For

that it verifies that the user has the <prefix>_Execute permission, where prefix is the

Permission Prefix defined for the object.

In the event that a permission error is found, it will be displayed on the screen or a

redirection to the object specified as not authorized for the SD property will be made.

In SD panels and WorkWith, the business logic is resolved using REST Web Services.

When these objects are generated, data providers exposed as REST web services are

also generated.

These web services become private when security is set on the objects mentioned

above.

Something to keep in mind is that actions in WorkWithSD panels are directly related to

the Business Component associated with the WorkWith. This means that if the

WorkWith pattern is applied to a Transaction, it is automatically saved as a Business

Component exposed as a REST web service.

To control permissions on insert, update, and delete actions, permissions must be

specified on the Business Component itself.

Since the idea is to validate if the user has rights to execute an object depending on

12



the method used to make the call, the GET method requires the

<prefix>_Services_Execute permission (in this case, prefix is the permission

prefix defined for the Business Component), and this is the minimum

permission required.

The rest of the permissions are as follows:

<prefix>_Services_Insert

<prefix>_Services_Update

<prefix>_Services_Delete

Here, as usual, we also have the FullControl that covers all permissions.

12



Earlier we said that users could be redirected to the unauthorized object if they did not

have permission to access a resource. This object can be configured at the KB version

level, under the SmartDevices specific section.

Not only can we configure it, but from there we should also define which objects will be

associated with the login and password change.

Let's see a particular feature of this last one.

13



As in web applications, when a user's password expires or needs to be changed,

he/she is automatically redirected to the change password object.

For Mobile in particular, we have the GAMSDChangePassword object within the

example objects already incorporated by GAM, and it can be used for this purpose.

As we said before, when users need to change their password, they will not be able to

do anything else until they change it since the applications will always redirect them to

the object that was configured to change the password.

14



With GeneXus, we can have Online and Offline applications. Let's see the differences

between them, together with their objects and methods.

Let's start with the Offline ones.

The architecture of these mobile applications has to consider two situations in which

these applications should work: when the application is offline and when it is online.

In the first case, the application must be able to process data and interact with a

database without internet access.

In the second case, the application can synchronize data with the server by invoking

web services.

Regardless if the application is connected or not, its processing is performed on the

device by updating its local database. Once a connection is established, the

application will synchronize the changes that were made while it was offline.

Such a mobile application can be divided into two components: a local component and

a server component.

The server can have a back end for the application, the database, and a service layer

for synchronizing data with the devices.

In the devices, the applications also have a database with a subset of the server data

and all the logic to be executed locally. The application also has all the metadata

needed for the user interface design and user events.

15



Both components communicate through REST services to perform the

necessary synchronization to populate the local database and send the

modifications made on the device to the server.

15



Now let's look at online applications, and to do so we go back to the image we saw at

the beginning.

The data that is required by the application and resides on the device will be obtained

by consuming REST services, which will access the user's database and return the

requested information to the application.

To determine whether an application will be Online or Offline, the Connectivity Support

property must be configured in the Main object with the value we want. As we can see,

this property is located under the Network item.

If the application is Offline, an automatic permissions check is not performed on the

device; this only happens in Online applications because they access a Rest service

on the Server.

16



Application with anonymous user. What does it mean?

This is a concept in mobile application development with GAM security that allows

giving users the option to use the application with the same or similar functionalities

that are available to registered users.

In the background, GAM automatically registers the anonymous user on each device.

In GeneXus 15 U10 or prior versions, this only happens with Custom, External Web

Services, and Local authentication types. As from GeneXus 15 U11, it is valid for any

type of authentication.

Let's see how it works.

17



Each device has an identifier for it, so when a user starts using the application, it

automatically creates a GAM "user" with that identifier and asks for a token.

The created user has the following characteristics:

• It is seen by the application as any other user but has the property 

GAMUser.isAnonymous = True.

• No personal data of the person operating the device is known, requested, or 

stored, so it is completely anonymous. 

• The session never expires, regardless of the time limit of the OAuth token that 

has been defined for the sessions.

If the user decides to register with the application, when using the &GAMUser.Save()

method the new user will be created with his/her registration data and will be assigned

the same identifier as the automatically registered user.

This allows any information related to the automatically registered user that has been

saved by the application to remain associated with the new registered user, without

having to make changes to the user-data relationships that have been previously

saved.

18



Let's see an example to understand this fully.

Suppose we have an application for selling plants.

This application allows registering and logging in with an account. In addition, we can

bookmark our favorite plants to purchase them later, for example.

Ideally, if I have not logged into the application yet and I select a plant as a favorite,

when I register my selection will still be there.

This is what GAM's anonymous user functionality allows us to do.

If we activate it, users will be able to bookmark all their favorites without worrying if

they are logged into the application or not, because if they haven’t done so, their

selection will be automatically transferred to their account when they register.

The same could be applied to the shopping cart, for example, by keeping the selected

items in the cart when the person registers to check out.

Note that if the user was already registered his/her bookmarks are not transferred. The

reason is that a login takes place, not the creation of a new user. This only works with

registration.

19



This property is available for Mobile objects that are Main (for example, the Panel),

when the integrated security is enabled.

This property value determines the application’s behavior when an anonymous user

tries to execute the first object that has the Integrated Security Level property set to

Authentication or Authorization.

As we see in the image, the possible values for the auto-registration property are True

or False.

If we select False and we have set the Integrated Security Level to Authentication or

Authorization, the anonymous user will be shown a dialog indicating that he/she needs

to log in or register.

If True is selected, instead of prompting for login or registration, the application will

automatically create a user based on the user's mobile device information.

20



These automatically registered users can be identified in the following ways.

One option is through the GAM session user, asking directly if it is an auto-registered

user.

Another similar way is to return a Boolean indicating if the current user is anonymous

or not.

The last option is as follows, where first the GAM user is obtained and then it is

checked if it is an auto-registered user.

21




