




In this video, we will explain what the GAM API is all about, with its reference

methods and implementations, authentication types, and REST services,

among others.



GAM provides an API that allows users to handle different types of data and methods

to add security to GeneXus applications, both web and mobile.

When integrated security is enabled in the KB, certain External Objects are

incorporated to allow the user to interact with the GAM API, where these objects are

included.

They can all be found below the module called GeneXusSecurity. Their domains are

distributed in the GeneXusSecurityCommon module.

4



In the introductory course, we saw the list of these External Objects provided by GAM,

and showed an example of use for one of them. Now we’ll discuss this in more detail.

These objects have properties and methods and, in turn, some of them implement the

same methods as Business Components, such as Load, Save, Delete, Fail, and

Success.

If a property of one of those GAM objects is changed, it is necessary to call the Save()

method and run the commit command.

The objects imported as Business Components are as follows: GAMRepository,

GAMApplication, GAMUser, GAMSecurityPolicy, GAMEventSubscription and all

authentication types.

As we’ve said before, all these objects can be found in the GeneXusSecurity module.

5



Here is the GAMRole object as an example.

Remember that these objects are composed of properties and methods.

In turn, GAM objects also have other methods implemented to create, update or delete

objects.

When using them, the Commit command must be used after the method has been

correctly executed. This command, just like in Business Components, is also used

after a Save or Delete.

The only GAM methods that execute an implicit commit are those related to login and

logout, and they are executed in a new logical unit of work, where it is not necessary to

do so since GAM internally generates the various inserts and commits them.

6



Within the reference implementations, we can find uses of static External Objects and

instance objects.

The difference between them is that the static ones are methods that apply when the

object does not have the &.

Some examples of static objects can be as follows:

GAMRepository.Login ==> With this we can log into the current repository

GAMUser.Get ==> Obtain information about the user currently logged in

GAMApplication.Get() ==> Obtain information about the current application

Examples of instance objects include:

&GAMApplication.GetPermissions ==> Where the & indicates that the method will be

applied on the loaded object instance, which in this case is GAMApplication. With this

we obtain an application's permissions.

&GAMUser.AddRoleById, where it receives an identifier and a collection of errors. With

this we add a Role to the user previously loaded (which was instantiated).

7



Now let's look at two reference implementations of our own, such as Login and Logout.

Let's start with Login. For this, we have the GAMExampleLogin object.

When pressing the login button, the implementation is based on executing the Login

method of the External Objects: GAMRepository.

As we can see, the Login method of this object already provided by GAM is being

used. The parameters included in the call are:

Username and password, obtained from the WebPanel.

Additional parameters: They can be the option to keep the session active, remember

the user, or another case. In addition, we can create custom properties and associate

them with the user's session as shown on the screen. We can also send it the type of

authentication used, OTP-related information, etc.

Error collection: If there are any errors, they are loaded into this variable for later

review.

The result of the operation is stored in the Boolean variable LoginOK. The action to be

performed depends on this value.

If it is true, the resulting value of the GetLastErrorsURL method is stored in the URL

variable. This returns the URL where the last GAM error occurred and once it is

executed, its value is removed. This is useful when users try to access an object with

authentication and they can't because they are not logged in, so they are first

redirected to the login and from there they are directed back to the object in question,

8



now with a valid session.

Otherwise, they are simply redirected to the Home defined in the application.

8



Logout.

This can be implemented in a very simple way, as shown below.

With the first instruction, the current session is ended and if there are any errors, they

are saved in the &Errors SDT.

The second instruction ends the flow by taking the user to the GAMExampleLogin Web

Panel or, when it is not available, to the Web Panel used for login.

This last instruction should only be performed in cases where this application is NOT

an IDP client. In the event that it is, there is no need to call anything after logout to

close the IDP session.

9



In the introductory course, we also addressed the types of authentication from the

GAM web back office, but we mentioned that this is also possible through the GAM

API.

To do so, we have the External Objects shown on the screen, one for each

authentication type supported by GAM.

Let's take the example of the Facebook authentication type.

If we wanted to create one of these, first we should create a variable of this type.

After that, we start filling in the different attributes of the authentication type, according

to our data.

If the authentication type is successful, we perform a commit to persist the data.

That’s all.

In the GAM API examples, you can find this and all the other examples for each

authentication type, including insertion, modification and deletion.

These examples are located in the GeneXus installation folder inside the Library/GAM

directory.

10



REST Services.

It is very common for applications to expose REST services, so security is very

important when data privacy is a concern.

In GeneXus, as we have already said, the solution to this is to use GAM, where OAuth

technology is used in the background, making it easier for the user to deal with the

complexity it contains.

The GAM API provides a way to restrict user access to REST services defined in the

application.

To consume a REST service in GeneXus, it is necessary to have the client_Id of the

Application, and the username and password with access permissions to this

application.

Before consuming the web service, you must first obtain an access_token.

Let's see a possible implementation of a procedure that consumes it.

11



The first string is composed of:

• Client_id of the application

• Grant_type of the flow

• Scope of the user account you want to access

• Username and password of the account you want to access

The URL to be consumed will be the application’s base, followed by

/oauth/access_token.

The Content-Type header must be added.

Also, we execute a POST request with this information through the httpclient.

12



To read the response, we can do it either in a string or in a JSON. When using the

latter, we have the following attributes to be able to read from the response

programmatically.

If the information is correct, the response of the request should look as follows,

providing an access_token in a JSON and informing about the scope.

13



Now suppose we already have the access_token we saw earlier; how do we proceed

to actually consume the service we want?

To do this, each call must contain the access_token included in the Authorization

header of our requests, after the OAuth word as shown on the screen.

An example of code can be the following, where we show how to get a list of products.

We indicate the URL, and add the headers which include the one we said before with

the access_token.

Finally, we execute the request, which in this case is a GET to DPProduct. As we said,

it represents a list of products exposed as a REST web service, where this is a secure

service because GAM would be enabled in its KB.

14



To close the theoretical part of this topic, we will see the most common External

Objects used in GeneXus applications.

Let's start with GAMRepository.

This object is quite large, both in terms of its properties and methods. The most

common options it provides are everything directly related to a repository, login, users,

sessions, roles, applications, etc.

Let's see some of the most common methods.

First we have GetAuthenticationTypes. This method is used to obtain the

authentication types of a repository.

Then we have GetUsersOrderBy, which obtains all the users according to the

preferences passed as filters, where we can also define an order for the return list

(corresponding to the domain GAMUserListOrder).

GetRoles and GetApplications correspond to methods to obtain the roles and

applications of a repository.

Lastly, we have GetSessionLogs which can be used to obtain a log of all the sessions

of a repository, with the possibility to filter, for example, by the active sessions.

As we can see, all methods always include the same parameters:

Those ending in Filter are useful to pass filters to the query to be performed on the

15



database. Each one corresponds to another External Object with its

specification. They can be reviewed before using them to define filters that

meet our needs.

The other parameter corresponds to the various errors that the method may

cause when used, which can then be read to verify the result of the operation.

15



GAMApplication.

With this object we will have control over the applications defined in GAM.

Let's see four of its most common methods.

First we have GetPermissions, which allows us to obtain the list of permissions defined

in an application. In its first parameter, we will indicate the filtering we want to do in the

result list.

The other three parameters are used to add, modify or delete permissions of an

application. In this method, through the first parameter we must indicate the data of the

permission to which we will apply one of these functions.

16



GAMUser.

With this object, we have full control of a GAM user. Its methods include the ability to

obtain all the information of each one and to control their roles, permissions, and

sessions.

Among the most common ones we find the typical GetRoles to obtain the roles of a

user.

Then we have GetUnassignedRoles, which would be the opposite of the previous

method. It returns the roles that the user is not assigned.

GetPermissions returns the permissions associated with the user. As in the previous

method, we have the filter variable.

Finally, PhysicalDelete physically deletes users and all their related data.

17



GAMRole.

With this object, we can manage GAM roles. Its most outstanding methods include the

ability to obtain, add and delete them, as well as to control their permissions, among

others.

The most common methods are as follows:

With GetPermissions we will obtain all the permissions associated with the role we

have in the GAMRole variable.

With GetChildren we will obtain all the children roles contained in the identified role.

In both methods we can use the filtering that we have mentioned for all the other

methods.

Next, we have Add and Delete roles by identifier, which basically do what the name of

the methods say, except that they work with the child roles of the role to which they are

instantiated. In the Id parameter we send the identifier of the role to add or delete.

18



Let's continue with GAMSession.

With this object we can control all sessions. We can obtain all the attributes of a

session and its roles, among other things.

Let's see two of its methods:

To load the data of the current session, we do it as follows by using GAMSession.Get()

and storing the result in the &GAMSession variable. This variable is only for the current

session.

If, for example, we wanted to see the history of all sessions, we must use the

&GAMSessionLog object.

In the same way we load the data of the current session, we can load the roles of a

session using the GetRoles method.

19



Finally we have GAMVersion; although it is a domain and not an object, it can be

useful to know it.

There are two ways to obtain the GAM version:

The first one is through the web back office, as we see on screen, in the GAM

Configuration option within Settings.

The second way is through GeneXus code, and for this we have different options:

• To find out the API version, we can do the following:

1. First we can query it with the domain, as shown below.

2. Another option is to perform the following For, where the GAMAPIVersion

variable of GAMVersion type will have the version we are looking for.

• To find out the database structure version, we can make a query to the

database like the one shown on the screen; this returns a Boolean indicating the

result, and the version number is recorded in the variable

GAMDatabaseVersion.

Something to keep in mind is that the database version may be newer than the GAM

API version.

20




