
………..……………………………………………………

Web Services. Advanced topics.

Publishing SOAP services with GeneXus

In this video, we will focus on publishing, testing, and customizing SOAP services
with GeneXus, including assigning a namespace, or including more than one
method in a single web service.

1

………..……………………………………………………

Publishing a procedure as a SOAP web service

We are going to publish a procedure object as a service.
This service will access the database of an application for a Travel Agency, and will
return the collection of tourist attractions registered by the agency that belong to
a given country.

To do so, we create a procedure object and name it GetAttractionsByCountryWS.
When we publish a web service, it is important to choose a name that helps
identify the function of the service, so that it is clear to the consumer.

The procedure receives the country identifier by parameter, and returns in a string
a JSON structure with the list of attractions that belong to the received country.

To define the structure, we create an SDT collection with the data of the
attractions we want to return, and in the procedure we create an SDTAttractions
variable of the SDT collection data type, a OneAttraction variable of the collection
item type, and an Attractions variable of the LongVarChar type that will contain
the JSON that the procedure will return.

In the source, the For Each navigates the Attraction table (associated with the
Attraction base transaction) filtered by the country received by parameter. For
each attraction encountered, it loads the values into an item and then the item is
added to the collection. Finally, the collection SDT variable is serialized to a JSON
and assigned to the output parameter variable.

To expose the GetAttractionsByCountryWS procedure as a SOAP service, we set
the Expose as Web Service property to True, and set the SOAP Protocol property

2

………..……………………………………………………

to True and REST Protocol to False.

For the service to be published on the web server, we must do a Build.

2

………..……………………………………………………

Testing the procedure published as a SOAP web service

https://www.soapui.org/

https://www.postman.com/

Now we will verify that the procedure is correctly exposed as a SOAP service.

To test it, we can use several tools, such as SOAP UI or POSTMAN. These tools
allow consuming the web service as clients, to check if the service is working
correctly and to obtain detailed information about the process, both for SOAP and
REST web services.

3

………..……………………………………………………

Testing the procedure published as a SOAP web service

https://www.telerik.com/fiddler

https://sourceforge.net/projects/open-tcptrace/

It is also useful to use tools that allow you to view the service flow; that is, to see
the execution request to the server (Request) and the response of the service
(Response).

Two of the best known tools are Fiddler and TcpTrace. TcpTrace is free (open
source), but only allows HTTP flow; for HTTPS, Fiddler must be used.

These tools are between the consumer application and the web server, as if it
were a proxy, and show the Request and Response between the client and the
service.

4

………..……………………………………………………

Installing SoapUI Open Source

We are going to use the SoapUI tool to test our service. To do so, we open the
soapui.org web page and download SoapUI OpenSource.
Next, we install it and when we run it the Start Page appears. If in Resources we
click on Test a SOAP API, it opens a page with instructions, so we will follow them.

We create a new SOAP Project; in the Project name, we type
GetAttractionsByCountry and press OK.
Now we right-click on the Project and choose Add WSDL.

This WSDL file was generated by GeneXus following the Web Services Description
Language specification; it contains the information of how our web service is
structured, including its methods, the parameters of each method, etc.

5

………..……………………………………………………

Using the browser to discover the WSDL structure

To view the contents of this file, we open a browser window and type the URL of
our service. Since we are generating in .NET, we write the URL formed by
concatenating the URL of the Web root property of the generator, and the name
of our exposed procedure. Then we add .aspx, a question mark, and the letters
WSDL. If the generator were Java, we would add /servlet before the object name
and not the aspx extension.
If the exposed object were a Business Component, the BC name would be
followed by “_BC” if the generator were . NET, and by “_BC_WS” if the generator
were Java.
We press Enter and see that the browser shows the web service structure, where
we identify some things such as the name, the Execute method required by the
CountryId parameter, etc.

[http://localhost/TravelAgency_ExpertCourseNETLocal/GetAttractionsByCountry
WS.aspx?WSDL]

6

………..……………………………………………………

Testing our web service in SoapUI

Now that we know that the WSDL was opened correctly, we are going to enter
the same URL in the SoapUI project window and press OK.

Under the project we created, an entry is displayed with the name of our service
and the Execute method. If we press the + button, a Request is automatically
generated to invoke the service. We double-click and the Request Editor opens;
on the left side there is a template of the XML for the invocation, and on the right
side there is the response given by the service when it is invoked.

In the request window, in the Execute method we identify the CountryId
parameter, so we replace the question mark with the identifier of the country for
which we want to obtain information about its attractions. We write 2, which is
the ID of France.

Now we press the Play button and see that the structure of the response appears
on the right. In the Attractions node, moving to the right, the collection of tourist
attractions in France appears in straight brackets.

We can also see this information as XML, and we verify that our
GetAttractionsByCountry service is working perfectly.

7

………..……………………………………………………

Use of Namespaces in a SOAP web service

URL

URI

+ Name

Namespace:

TravelAgency_Expert

Course

GetAttractionsByCountryWS

Namespace:

TravelAgency__Web

Application

GetAttractionsByCountryWS

Now let's look at the concept of namespace and how this can be useful when
publishing a service.

A namespace is a container of names where the same name cannot be repeated.
However, the same name can be present in more than one namespace.

The Exposed namespace property allows us to assign a namespace to a service.

This property contains a string that helps to identify the web service. The
combination of the namespace with the name of the web service must be unique;
in this way, if we have two services with the same name—but which belong to
different applications—they will be correctly identified by changing the
namespace.

By default, the Exposed namespace property has the name of the KB and that does
not cause any problems if we are in the prototyping stage. However, when we
move the service to the production environment, we must write in this property a
URL that identifies the company or the project to which the service belongs;
otherwise, some consumers will not be able to process it.

When adding security to web services, it is crucial that this URI (Uniform Resource
Identifier), which consists of the URL and the name of the service, be well formed
and unique.

8

………..……………………………………………………

Procedure exposed as SOAP Web service with more than one method

Stubs use: Only in SOAP web services

Something that may arise when exposing a service is how we can include several
methods within the same service.

As we already confirmed, if we expose a procedure object as a web service, the
service includes only one method: Execute.

If you need to define more than one method in the same web service, you must
use stubs in the procedure source.

Stubs are clauses which, within the source of a procedure object, allow us to
define a block of code associated with a name and then execute the code by
invoking that name. The concept is similar to that of a subprogram or subroutine
and each stub can have its own parameters.

It is important to point out that the use of stubs is only valid when we expose the
procedure with the SOAP protocol; the procedures exposed as REST do not
support this functionality.

9

………..……………………………………………………

SOAP web service with more than one method

Let's see an example of exposing a SOAP procedure with more than one method.

Let's suppose that we want the procedure GetAttractionsByCountryWS that we
exposed as a web service to have two methods, one to bring all the tourist
attractions of a country and another one to return only the attractions of a
country with a number of trips greater than or equal to a given number.

We save the procedure GetAttractionsByCountryWS as
GetAttractionsByCountryWS2 and modify its parm rule by adding the variable
&TripQty as input parameter.

In the source we create 2 stubs, one named AllAttractionsByCountry, which
receives as parameter the CountryId and returns a JSON with all the attractions of
that country (with or without trips), and another stub named
AttractionsByCountryWithTrips, which receives as parameters the CountryId and
the number of trips by which we want to filter, and returns a JSON with the
attractions found that have the same number or more trips than the value of the
variable &TripsQty.

Let's do a build all so that the service is published on the server.

10

………..……………………………………………………

SOAP web service with more than one method

We are going to import the new web service we created. To do so, we run the
wizard, type the new URL with the name of the new object and press Next.

Next, we modify the name of the suggested external object by adding _EO, type
the name of a destination folder, and click on Next.

Now if we open the Service Description node, we see that the Execute method is
no longer there and there are the two methods corresponding to the stubs we
created.

If we select each method, in the window on the right we can see the parameters,
which match those previously defined in the stubs.

If for compatibility reasons it is required that the Execute method continues to be
exposed, a stub with the name Execute must be expressly created.

Moving on with the wizard, we click on Import and verify that the external object
was created inside the folder we already had. If we open it, we confirm that it has
the 2 methods that we defined.

In this way, we’ve experienced the flexibility of including several methods in the
same service, something very useful for the consumer of our SOAP web service.

[http://localhost/TravelAgency_ExpertCourseNETLocal/GetAttractionsByCountry
WS2.aspx?WSDL]

11

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

12

