
………..……………………………………………………

Web Services. Advanced topics

Publishing REST services with GeneXus

So far, we have only published SOAP services. Now we will see how to publish
REST services with GeneXus, using the usual mechanism and also the API object,
with all the advantages provided by this object.

1

………..……………………………………………………

Publishing a REST web service

• Procedure

• Business Component

• Data Provider
+

• Procedure

• Data Provider
+

API Object

In GeneXus, there are two ways to publish a REST service.

One that we have already seen, which is to expose procedure objects, data
providers, or business components using the Expose as Web Services property set
to True and setting the REST Protocol property to True.

Another way is using the API object, which is useful to expose procedure objects or
data providers. This API object allows exposing services with REST or gRPC
protocols, making it possible to group several services that are semantically or
functionally related.

The API object adds an intermediate layer that separates the interface from the
implementation details, so that future programming changes to objects do not
affect the way they are invoked by external applications.

This allows for a mapping between the internal name of the object in the KB and
the name used to expose it as a service, as well as changing the type and name of
the parameters or changing the access path without affecting the way in which the
service is invoked.

This abstraction provides significant flexibility because we can evolve our services
without forcing the applications that use them to change their code to adapt to
the changes.

For that reason, to expose Procedures and Data Providers as REST services, it is
strongly recommended to always use the API object, instead of the Expose as Web

2

………..……………………………………………………

Service and Rest Protocol properties.

2

………..……………………………………………………

Publishing a service with the API object

To test what we have seen, let's create an API object to publish the 2 methods we
had to get attraction data by country, as REST services. We call the API object
GetAttractionsInfo.

The API object has three parts: Service Source, Events, and Variables. In the
Service Source section we define, using a declarative syntax, the name of each
service to be published, with the corresponding parameters, specifying whether
each parameter is input or output and the name of the GeneXus object in our KB
that we are exposing as a service, with its corresponding parameters.

Here we are exposing the GetAttractionByCountry service based on the
GetAttractionsByCountryWS procedure. The parameters match.

Similarly, below we are exposing the GetAttractionsByCountryWithTripsWS
procedure as a service with the name GetAttractionsByCountryAndTrips, and the
parameters we expose are the same as those of the procedure object.

In the future, this definition will allow us to change the name or parameters of the
GeneXus object without changing the definition of how this object is published.

In the events we have the Before and After event, with which we can perform
actions that are executed before or after the invocation of the object as a service.
We also have Before and After events for each exposed service. In these events it
is not possible to access the database. If it is required, it must be included in the
code of the procedure or data provider exposed as a service.

3

………..……………………………………………………

In the variables there are some under the group of standard variables, which allow us to know or
change characteristics of the API object at runtime. The variable &Pgmname contains the name of the
object, &Pgmdesc contains the description of the object, and &RestMethod contains the HTTP method
with which the object was called. This variable is empty when the object is called using a protocol
other than REST. Also, the &RestCode variable is used to set the HTTP status code, depending on what
the service invocation returns. In our example, if we do not find any attraction for the given country,
we could assign the &RestCode variable the value 404 (Not found).

3

………..……………………………………………………

Customizing a REST web service with the API object

1) Parameter customization

…GetAttractionsInfo/GetAttractionsByCountry?CountryId=3

…GetAttractionsInfo/GetAttractionsByCountry?Id=3

URL:

URL:

As we said before, the API object allows us to change the name of a parameter. To
do so, we must assign the External Name property of the variables used in the
parameters of the exposed service.

In the example that we saw, if we go to the variables of the API object
GetAttractionsInfo, we select the CountryId variable and in the ExternalName
property we write Id.

The URL with which the service will be invoked, instead of using the name
CountryId for the parameter, will use the name that we defined as external name;
the word Id will appear instead of CountryId.

4

………..……………………………………………………

Customizing a REST web service with the API object

2) Service URL customization

…GetAttractionsInfo/GetAttractionsByCountry?CountryId=3

URL:

To change the default URL of an API object, we can do it by changing the value of
its Services base path property.

By default, this property has the name of the API object. If we enter another text,
that text will appear in the URL instead of the name of the object.

5

………..……………………………………………………

Customizing a REST web service with the API object

3) Reading parameters from HTTP header Request

Another thing we can do with the API object is to read the data from the header of
the invocation to our REST service.

If any parameter is received in the HTTP header of the service, using the Before
event, we can read the header that is sent by the application that invokes the
service when it makes the Request.

The text expression used between the brackets of the GetHeader method
determines the name of the HTTP header. These headers, which are invisible to
the end user, define how information is sent or received from the service. For
example, who is calling the service, host name, access credentials, connection
type, cookies, etc.

In this case, the header is named “User-Agent,” and the value returned is a text
string that identifies the user agent to the server; in other words, the name of the
client application that is invoking the service.

6

………..……………………………………………………

Customizing a REST web service with the API object

4) HTTP access methods customization

With the API object, if we include an annotation prior to the definition of the
service, we can specify the HTTP access method.

Let's suppose that we have two services, one named GetAttraction to obtain data
from a specific tourist attraction through a data provider, and another one named
InsertAttraction, which allows us to create a new attraction to the database
through a procedure.

For example, in the case of the GetAttraction service, we are specifying that the
GET method will be used to invoke it, since we are obtaining information through
the service. The annotation goes between straight brackets; it will contain
RestMethod and between brackets the HTTP method to use—in this case, GET.
In the example, the internal method to be executed is that of the data provider
GetAttractionInfoWS. Since Data Providers return information, they are invoked by
default as GET, and with the annotation we are making this explicit.

The InsertAttraction method that inserts an attraction into the database is invoked
with a POST, using the RestMethod(POST) annotation.
The CreateAttractionWS object, since it is a procedure, can be invoked as GET or as
POST; in this case, we invoke it explicitly as POST because it will be saving
information in the database.

7

………..……………………………………………………

Customizing a REST web service with the API object

5) Service response customization

By using the standard &RestCode variable of the API object, we can change the
HTTP status code.

We do this in the events, and we can do it before invoking the service (in a Before
event) to set a value in case it is already determined that the service cannot be
invoked because the received data is not correct.
In the code, we are assigning the HTTP Status Code 412 Precondition Failed, if the
AttractionId received as parameter is not valid.

And we can also do it after executing the service, to establish the result of the
operation; for example, if the required information was not found.
In the example, the information received has the AttractionId field empty, so no
information was found for an attraction with the AttractionId passed as
parameter. Therefore, we assign the &RestCode variable with the value 404 (Not
Found).

In this video, we saw the flexibility of the API object to publish REST services. To
learn more about this object, you can visit the wiki.

8

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

9

