Web Services in GeneXus

Introduction

GeneXus

Next, we'll see what web services are and how they can be usedin a
GeneXus application.

Definition

Server

Web Servige

o

XML

r\ JSON
</>

, Clients
Provider

Web Services are programs that provide useful functionalities to other
programs and are stored in web servers so that they can be located and
invoked over a network, usually the Internet.

When we publish the backend services of our application on the web
server so that they can be accessed by other systems, they become web
services. To facilitate access to these services, standards are used that
define how to interact with them and the format of the information
received.

The service provider "publishes" a Web Service on a server and the client
applications "consume" the Web Service published.

To access the service, the client application uses its location (URL) in order
to invoke it and sends it the required parameters.

Then, it receives the returned information, usually as a structure in XML or
JSON format.

GeneXus'

GeneXus'

Web Service Protocols

<

ZRuby & python

Protocol / Standard

Go nu@de

SOAP —— WSDL

REST —— OpenAPI

Web Services can be developed by following different standards; the
most common ones in the industry are SOAP and REST. Each standard

defines how to publish the information about the functions available in the
web service.

SOAP web services use a definition written in WSDL (Web Services
Description Language), while REST services use the OpenAP| standard.

To access a published Web Service, we must know its location and import
its definition in order to access the functions available in the web service.

GeneXus allows consuming Web Services that have been developed in
any programming tool or platform, with SOAP or REST protocols.

Introduction GeneXus’

How to consume a Web Service in GeneXus
REST

+ OpenAPICommon
Tools | Test Help £
ar ApiR

Extensions Manager o7 piResponse

Database Reverse Engineering +" BoaoleanToJsonFormat

Application Integration v |2/ cURL Inspector «* CallApi

Workflow » | BY External Data Store Service Import +* DoteTimeToJsonFormet

Options Iz, Fonts Import + * DateToJsonFormat

Advanced v |[2a] Images import «* GUIDToJsonFormat

Explore Knowledgebase Directory @ Json Import >3 NumericTolsonFormet

Explore Target Environment Directory S Sketch Import N N R
B CMD Environment Directory {} OpenaPlimport .

Security . E WSDL Import + WebServices

GeneXus Access Manager bl (h | XML Schema Impprt x] Ap

Update Android SDK % Client

GeneXus Account... + Model

SOAP

X | MyWebSenice

External object

To integrate a Web Service into a GeneXus application, go to
Tools/Application Integration; select WSDL Import if the Web Service
follows the SOAP protocol, and OpenAPI Import if the Web Service has a
REST architecture.

This will trigger a wizard that will vary depending on the type of Web
Service selected. Finally, if the Web service is SOAP, GeneXus will
automatically create an External Object associated with the Web Service
and the structured data types required for managing its data.

Otherwise, if it was REST, several GeneXus objects will be automatically
created (and we will usually include them in a module, for example,
WebServices). Also, they'll allow us to automatically run the service
through these objects in our KB. The wizard will leave in an API folder the
programs to invoke, and in a Model folder the SDTs to manage the data.

Demo: Acceso a webservices SOAP

#t| CountrylnfoService X

Structure
Structure Type
X CountrylnfoService
— _ _ = {7] Methods
w1 WebPanelCountryListFromWebservice X [7) ListofContinentsByName CountryInfoServicetContinent
Web Layout 7] ListDfContinentsByCode CountryInfaServicetContinent
{7 ListOfCurrenciesBytiame CountryInfoServicetCurrency
(5] ListofCurrenciesByCode CountryInfoServicetCurrency
:I = ;-_currenc,-rlame Character(9999)
‘
@ sCurrencylSOCode Character(9999)
:-_Lustofcounlwnamessycnde CountryInfaServicetCountryCodeAndName
Get countries list 93 ListOfCountryNamesByName CountryInfoServicetCountryCodeAndName V|7
'-‘._" CountryInfoServicetCountryCodeAndName X
Structure
Mame Type
IS0 Code Country name £ CountrylnfoServicetCountryCodeAndhame
&CountryListitem(0).sISOCode &CountrylListitem(0).sName * sisOCode Character(9999)
: Name Type ® shName Character(9999)
sfveaties " [
+| & | Standard Variables
\ ® CountrylnfoService Countryl e
[=] countryList CountryInfoServicetCountryCodeAndName
15Event "Get countries list’ -
2 &CountrylList = &CountryInfc vice.ListOfCountryNamesByName () @
3| L Endevent DEMO

Let's start by importing a list of countries from a SOAP web service into
our application.

To do so, we access the menu options Tools/Application
Integration/WSDL import and type the URL displayed on screen
(http://webservices.oorsprong.org/websamples.countryinfo/Countryln
foService.wso?WSDL), and click on Next.

We see that a service called CountrylnfoService was found. To order the
imported objects we are going to save them in the SOAPWebService
folder, leave the suggested prefix, and click on Next.

We click on the “+” sign and on the Service Description node. Note that a
list of the functions offered by the web service opens, such as:
ListOfCountryNamesByName to get the list of country names,
CountryCurrency to get a country’s currency, CountryFlag to get an
image of its flag, etc.

We click on Import so that GeneXus imports the web service definition
and we see that in the output window we are informed that a series of
structured data types and other components are being imported. At the
end, we confirm that the SOAPWebService folder appears in the
KBNavigator, and in its contents we find the external object
CountrylnfoService and a series of SDTs that will allow us to store the
information received from each method of the service.

If we double click on CountrylnfoService, we can see that all the methods
offered by the CountryIinfoService web service have been incorporated to
the external object, detailing the necessary parameters of each method
and what type of data it returns. In particular, we're interested in the
LisfOfCountryNamesByName method, which will return a list of countries
ordered by name.

http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL
http://webservices.oorsprong.org/websamples.countryinfo/CountryInfoService.wso?WSDL

Demo: Acceso a webservices SOAP

#t| CountrylnfoService X

Structure
Structure Type
X CountrylnfoService
— _ _ = {7] Methods
w1 WebPanelCountryListFromWebservice X [7) ListofContinentsByName CountryInfoServicetContinent
Web Layout 7] ListDfContinentsByCode CountryInfaServicetContinent
{7 ListOfCurrenciesBytiame CountryInfoServicetCurrency
(5] ListofCurrenciesByCode CountryInfoServicetCurrency
= ;-_currenc,-rlame Character(9999)
II @ sCurrencylSOCode Character(9999)
:-_Lustofcounlwnamessycnde CountryInfaServicetCountryCodeAndName
TS T I iy ervicetCouniryCodendtiame. 47
'-‘._" CountryInfoServicetCountryCodeAndName X
Structure
Mame Type
150 Cade Country name O CountrybiaSericaiCountryCodeariiiame.
&CountryListitem(0).sISOCode &CountrylListitem(0).sName * sisOCode Character(9999)
Name Type ® shName Character(9999)
o _
5| &] Standard Varisbles
\ ® CountrylnfoService Countryls e
D CountryList CountryInfoServicetCountryCodeAndName
1o Event "Get countries list’
2 &CountrylList = &CountrylInfc vice.ListOfCountryNamesByName () @
3| L Endevent DEMO

Now we create a web panel called WebPanelCountryListFromWebService.
It its variables, we create a variable of CountrylnfoService type that
automatically takes the data type of the external object.

If we return to the definition of the external object, we see that the data
type returned by the LisfOfCountryNamesByName method is an SDT
called CountryinfoServicetCountryCodeAndName. We open it and see
that it stores the ISO Code of the country and its name.

Let’s return to the web panel, create a CountryList variable of the data
type SDT CountrylnfoServicetCountryCodeAndName and set it as a
collection.

Now, in the form, we drag a button with the event name: Get countries list,
double click on it and in the event we insert the variable &CountryList and
assign it the variable &CountryInfoService. If we type a period, we see that
we can access all the methods of the web service, so we choose
ListOfCountryNamesByName.

We return to the form and drag the CountryList variable based on the SDT
and press OK.

We run it.

If we open the web panel WebPanelCountryListFromWebService and
press the button Get countries list, we obtain the list of countries in
alphabetical order with the ISO Code of each one of them, as we
expected.

This data can then be used in our travel agency application as a selection
list to filter by a country, or in different uses.

GeneXus’
. GeneXus actualmente puede
Demo: Acceso a webservices REST con protocolo OpenAPI importar OpenAPI versién 2.0

GetCountries | 1.0.0 | K2ANZ | v x +
< C @ appswaggerhub.com/apis/K2ANZ/GetCountries/1.0.0 s O » @

g%ggé:erubn

€ GetCountries - 1.0.0 - 3 Q Export ~
5 | Info Aa o « Client SDK
T . - i
@ b | e Sl Restcountries < Server st
Jrest/v2/name/{nane}: m
4 < Documentation
x g [Base URL: restcountries.cu 1
B est ~ Get By Country Name
I GET /rest/v2/name/{name} GetByCountryName API for restcountries.eu
GET /rest/v2/region/{region} - application/json
GET /rest/v2/capital/{capital} s - name
. . ath
GET Irest/v2/lang/{lang} = G SCH":::
GET Irest/v2/currency/{curren . _V
string
GET /rest/v2/alpha/{alphacod
GET [rest/v2/all
oK Rest operations about Rest v
Models ~ © s array
MODEL Countries 3 $ ﬂ frest/v2/name/{name} -
MODEL ~ GetAll 1
Jrest/v2/region/{region}:
I —— [cer [f—— -
MODEL Translations 3 - Rest - E
MODEL Languages e . /rest/v2/capital - DEMO
< /{eapital}

Let's look at the case of importing a REST web service that complies with
the OpenAPI specification, also known as the Swagger specification.

The example is obtained from the web page:
https://app.swaggerhub.com, an API called GetCountries. We choose the
Download APl option and download the .yaml file.

Demo: Acceso a webservices REST con protocolo OpenAPI

@ sSwrnPage X G Gedll X

{} openaPl import x Structure

+ RESTOpenApiWebService Name Type

File Path/Url £ Agi iy
* alphazCode VarChar(256)
Module/Folder | | RESTOpenApiWebService - .
pen oF GeiAlAG * alpha3Code VarChar(256)
< GetByAlphacode = 41 akspelings
_“ Cancel ® mem Varchar(256)
« GetByCapital * a2 Numeric(10.2)
« GetByCountryName = & borders
CHEO * Rem VarChar(2s6)
o GelByCunency S 2 ealingcodes
+* GetBylLang * Rem VarChar(256)
* apial VarChar(256)
Output »* GetByRegion o doc Varchar(256)
« Client currencies
Show : General X|lQs ® em Currencies
Importing Procedure 'GetAllApi' ... Successful «* ApiBaseUr * demonym VarChar(256)
Importing Procedure 'GetByAlphacode'... Successful 4+ Model o flag VarChar(256)
Importing Procedure 'GetByCapital®... Successful X o gni Numeic(10.2)
Inporting Procedure "GetByCountryllame'... Successful s Countries Janguges
Inporting Procedurs 'GetByCurrency'... Successful & Curencies . Rem Languages
Importing Procedure 'GetBylang'... Successful - o lating Numenc(10.2)
Inporting Procedure 'GetByRegion'... Successful s GetAll o name Varchar{2s6)
Importing Procedure 'OpenAPICommon.DateTalsonFormat’... Successful & Languages o natveniame Varchar(256)
Importing Procedure ‘OpenAPICommon.DateTimeTolsonFormat'... Successful = o mmedcCode Varchar(256)
Importing Procedure 'OpenAPICommon.BooleanTolsonFormat' ... Successful #r) RegionaiBlocs
* population Numenc(9.0)
Importing Procedure 'OpenAPICommon.VarCharTolsonFormat'... Successful & Translations o regin VarChan(256)
Inporting Procedure 'OpenAPICommon.NumericTolsonFormat'... Successful
Inporting Procedure 'OpenAPICommon.GUIDTa)sonFormat®. .. Successful
Success: OpenAPT Import
GetAllApi(&GetAllOUT, &HttpMessage, &IsSuccess)

DEMO

Next, we select Tools/Application Integration/OpenApi import and choose
the .yaml file we had downloaded. As a folder we type
RESTOpenApiWebService and click on Next.

We see in the Output window that several elements are imported and when
finished we open the destination folder. We can see that the API folders
were created containing the methods that we can invoke, the Client folder
with the ApiBaseURL method and the Model folder containing several SDTs
that are the data types returned by the previous methods.

If we open the SDT called GetAll we can see all the data we can retrieve
from the countries. And if we want to get the list of countries, we can invoke
the GetAllApi method that will return the data in the variables &GetAllOut
(collection of GetAll elements), &HttpMessage and the Boolean variable
&lsSuccess.

Next, we can run through the &GetAllOut collection to get the country data.

Introduction GeneXus’

How to consume a Web Service in GeneXus
(continued)

OData services
— (Protocol: ODATA)

Tools | Test Help

Extensions Manager ’/—\

Database Reverse Engineering \-/ L -

Application Integration » :// cURL Inspector

Workflow » | g External Data Store Service Import

Options T(_{' FONTs IMport

Advanced » [;j Images Impo

Explore Knowledgebase Directory @ JsonImpo @_— >

Explore Target Environment Directory & Sketch Import DataStore model
@ CMD Environment Directory {_! OpenAPfImport </>

Security y | X WSDL fmport

GeneXus Access Manager » EE Abiyscheniall meort

Update Android SDK

GeneXus Account...

< DataStore1 (Service) ——— "@Data View ————) Transactiun

OData services are a special type of web services. These services use the
Open Data Protocol (OData) designed to provide operations that insert,
modify, or delete records in a database through a website.

Just as for a Soap or Rest Web Service its definition had to be imported
first, in order to consume an OData service we must first import the model
with the database entities included in the service.

To do so, go to Tools/Application Integration and select External
DataStore Service Import. Since the process implies creating a DataStore
of Service type to associate it with the external datastore, we can only use
this feature in GeneXus Full.

After executing the wizard, as many transaction objects will be created as
entities were included in the model, and we will be able to work with them
as with any other transaction in our application.

GeneXus’

How to publish a Web Service with GeneXus

1251 | Fiter
Name MyWebService
Description My Web Service
Module/Folder Root Module
Main program False
Call protocol Internal
Execute in new LUW False
Qualified Name MyWebService
Object Visibility Public
Expose as Web Service True
Objects:
J SOAP Protocol True
L]
Procedure REST Protocol True
4 Buslness Com ponent Generate OpenAPl interface Use Environment property value

+ Data Provider

GeneXus also allows creating web services and publishing them on a web
server.

The GeneXus objects that can be exposed as web services are
procedures, business components, and data providers.

To expose one of these objects as a Web Service, we set the property
Expose as Web Service to True, and indicate whether to use SOAP
protocol, REST or both.

If you want the service to provide CRUD operations on a database, you
can also generate the necessary information following the OData protocol.

Web Services / Introduction GeneXus’

Example of use of a REST Web Service

[Properties

TOP NEWS

K2BAudit 4R Draw

Name Folder Last Opened

[DEMO: https://voutu.be/bvmtOGjcxpw]

As an example, we will create a REST Web Service that inserts a new airline in the database and
we will invoke it from our application.

To do so, first we open the Airline transaction and set its Business Component property to True.
Then we are going to create a procedure object that receives by parameter the data of an
airline and inserts a new record in the Airline table.

We call the procedure CreateNewAirlineWs and create a Parm rule with 2 input variables:
&AirlineName and &AirlineDiscountPercentage. We create these two variables using the Add
Variable, and then in the Variables section we create another variable called Airline, of Airline
business component type.

In the source, we write the code to insert an airline with the data received by parameter. We
don't have to enter a value for Airlineld because it is autonumbered.

Now, we open the properties of the procedure object and set Expose as Web Service to True,
SOAP Protocol to False; we leave REST Protocol set to True and set Generate OpenAPI
interface to Yes. The latter will allow the definition of our Web Service to be generated in the
OpenAPI standard.

We right-click on the procedure and select Build With This Only, so that the service will be
published on our web server, in this case on our local machine. In the Ouput window we see a
message confirming that the documentation of the Rest APl of the Web Service was generated,
with its definition.

Before importing the Web Service, we'll create a new module called WebServices, so everything

https://youtu.be/bvmt0Gjcxpw

is stored in that module.

11

Web Services / Introduction GeneXus’

Example of use of a REST Web Service

BINCO. S v Release
2 Loyout Buil jedge Manag b Test Help
x @ B Froperiien s x
. Marketplace pdate 1 2] | Finer X

TOP NEWS

K2BAudit 4R Draw

Name Folder Last Opened

[DEMO: https://voutu.be/bvmtOGjcxpw]

To import the Web Service, we go to Tools/Application Integration and select OpenAPIl Import. In
the File Path / URL we type: C:\Models\TravelAgency\CSharpModel\Web\default.yaml because it
is where the Rest APl documentation was generated, and select the WebServices module as
target. We confirm that everything has been imported correctly; if we open the WebServices
module, the imported procedure is located in the API folder. Also, we see that in the Model folder
there is an SDT called CreateNewAirlineWSInput, and if we open it we see that the parameters we
need to pass to the service are available here.

To test whether the Web Service works correctly, we created a web panel called
CreateNewAirlineUsingWS. Next, we drag a button to the form and call the event Create airline.
We open the variables and create a variable & CreateNewAirlineWSInput which is automatically set
as SDT type.

In order to receive feedback about the result of the Web Service execution, we also created a
variable &lsSuccess and another one &HttpMessage.

We double-click on the button and in the event we load the members of the SDT; next, we invoke
the Web Service passing the SDT as a parameter, and finally we write the following code to show
messages on screen.

We press F5... We see the lines that we've entered... And we execute the webpanel that we've just
created.

We press the button and see that the service informs us that the airline was created correctly.

To confirm it we select the Airline transaction... And see that the airline we wanted has been
actually added.

https://youtu.be/bvmt0Gjcxpw

Objects to be published

API Object

as services:

Procedures
Data Providers

GeneXus'

IP.
=

! AP Clients
L — 3§ Object

We will now see another way to publish objects as services, using the AP
object.

The API object (Application Programming Interface) is a GeneXus object
that allows us to programmatically define an access interface to objects of
our application, such as procedures or data providers.

This means that an external application will be able to access these
objects published as web services.

The API object adds an intermediate layer that separates the interface
from the implementation details, so that future programming changes to
objects do not affect the way they are invoked by external applications.

For example, a mapping is made between the internal name of the object
in the KB and the name with which it is exposed as a service. Also, you can
change the type and name of the parameters or change the access path,

without this affecting the way the service is invoked.

This abstraction provides significant flexibility because we can evolve our
services without forcing the applications that use them to change their
code to accommodate these changes.

API Object (continued)

| ~F | Fitter
New Object X
API: API1
Select a Category: Select a Type: E
AP B Transaction Name API1
User Interface EDala Provider
BPM = .
Chatbots = Data Selector Description API
I
R E=Data View
esources
Documentation -EgDﬂma‘” Main program True
Extensibility .~ Procedure
Deploy 5 Structured Data Typs REST Protocol True
Reporting [\, Subtype Group
Test
ALL gRPC Protocol False
Creates a new 'API Generate OpenAPl interface No
Services base path API
Name: [Pt
Description: [API1 Module/Folder Root Module
Module/Folder: Roat Module - Qualified Name API1
Gancel Object Visibility Public
Generate Object True

To create an API object, go to the Data Management category and select
the APl type. In its properties we can define at design time its name,
address, and protocol to be used, among other things.

The gPRC protocol is a modern open source framework developed by

Google, which allows calls to remote procedures with high performance
and in a bidirectional way.

14

API Object (continued)

Start Page X .t APlAttractionsInfo™ X

1 AttractionsInfo{

g RankingCountriesAttraction(out:&5DTCountries) => RankingCountriesWithAttractionsQty(out:&SDTCountries);
i ListAttractionsByName(in:&NameFrom, in:&NameTo) => AttractionsByName(in:&NameFrom, in:&NameTo);

:

Start Page X .t APlAttractionsinfo™ >

Service Source * | Events

Type

I
Start Page X .t APlAttractionsinfo® X Stendard Varizbles R
® Pgmdesc Character(256)
Service Source * Variables * ® Pgmname Character(128)
® RestCode Numeric(3.0)

~ ® RestMethod HttpMethod, GeneXus
¢ - ® RestMsg Character(255)
After éAutndeﬁnedVarlahles

Before S le SDTCountries SDTCountries

i ® NameFrom Attribute:AttractionName

e NameTo Aftribute:AttractionName

The API object has three sections: Service Source, Events, and Variables.

The name of each service to be published is defined in Service Source,
through a declarative syntax, with the corresponding parameters and the
name of the GeneXus object in our KB that we are exposing as a service,
with its corresponding parameters.

In the example, we see that the data provider that we previously created
under the name RankingCountriesWithAttractionsQty is being published
as a service under the name RankingCountriesAttractions, and the
parameters that we expose are the same as those of the object.

The same is true for the AttractionsByName list that we publish under the
name ListAttractionsByName.

In the future, this definition will allow us to change the name or
parameters of the GeneXus object without changing the definition of how
this object is published.

In the events we have the events Before and After, with which we can
perform actions that are executed before or after the invocation of the
object as a service.

In the variables there are some of the standard type, which allow us to
define or change characteristics of the API object at runtime.

15

Web Services / Introduction

More information about Web Services

WSDL: https://wiki.genexus.com/commuwiki/serviet/wiki?6181

OpenAPI: https://wiki.genexus.com/commwiki/serviet/wiki?31864
OData: https://wiki.genexus.com/commwiki/serviet/wiki?40713
API Obiject: https://wiki.genexus.com/commwiki/serviet/wiki?46151

For more information about Web Services in GeneXus, click on these wiki
links.

GeneXus’

https://wiki.genexus.com/commwiki/servlet/wiki?40713

GeneXus

17

	Slide 1: Web Services in GeneXus
	Slide 2: Definition
	Slide 3: Web Service Protocols
	Slide 4: How to consume a Web Service in GeneXus
	Slide 5: Demo: Acceso a webservices SOAP
	Slide 6: Demo: Acceso a webservices SOAP
	Slide 7: Demo: Acceso a webservices REST con protocolo OpenAPI
	Slide 8: Demo: Acceso a webservices REST con protocolo OpenAPI
	Slide 9: How to consume a Web Service in GeneXus (continued)
	Slide 10: How to publish a Web Service with GeneXus
	Slide 11: Example of use of a REST Web Service
	Slide 12: Example of use of a REST Web Service
	Slide 13: API Object
	Slide 14: API Object (continued)
	Slide 15: API Object (continued)
	Slide 16: More information about Web Services
	Slide 17

