Web Services in GeneXus

Introduction

GeneXus

Next, we’ll see what web services are and how they can be used in a GeneXus
application.

Definition

Server

Web Servige

+

XML

/\ JSON
</>

Clients

Provider

Web Services are programs that provide useful functionalities to other programs
and are stored in web servers so that they can be located and invoked over a
network, usually the Internet.

When we publish the backend services of our application on the web
server so that they can be accessed by other systems, they become web
services. To facilitate access to these services, standards are used that
define how to interact with them and the format of the information
received.

The service provider "publishes" a Web Service on a server and the client
applications "consume" the Web Service published.

To access the service, the client application uses its location (URL) to invoke it and
sends it the required parameters.

Then, it receives the returned information, usually as a structure in XML or JSON
format.

GeneXus’

GeneXus’

Web Service Protocols

«
B =
Java

ﬂRuby ™ python

Protocol / Standard

SOAP —— WSDL

REST —— OpenAPI

Web Services can be developed by following different standards; the most
common ones in the industry are SOAP and REST. Each standard defines how to
publish the information about the functions available in the web service.

SOAP web services use a definition written in WSDL (Web Services Description
Language), while REST services use the OpenAPI standard.

To access a published Web Service, we must know its location and import its
definition in order to access the functions available in the web service.

GeneXus allows consuming Web Services that have been developed in any
programming tool or platform, with SOAP or REST protocols.

Introduction GeneXus’

How to consume a Web Service in GeneXus
REST

+ OpenAPICommon
Tools | Test Help
7 ApiResponse
Extensions Manager P po

. ToJ
Database Reverse Engineering BoaleanToJsonFormat

Application Integration » :j cURL Inspector +* CallApi

Workflow » | BY External Data Store Service Import +* DoteTimeToJsonFormet

Options IQ. Fonts Import +* DateToJsonFormat

Advanced + | [2a] Imagesimport +* GUIDToJsonFormat

Explore Knowledgebase Directory @ Json Import) NumericTolsonFomet

Explore Target Environment Directory S Sketch Import N N e
B CMD Environment Directory {} OpenaPlimport .

Security , ||X] WSDLImport + WebServices

GeneXus Access Manager L (h | XML Schema Impprt x] Ap

Update Android SDK % Client

GeneXus Account... + Model

SOAP

& mywebseice <——— External object

To integrate a Web Service into a GeneXus application, go to Tools/Application
Integration; select WSDL Import if the Web Service follows the SOAP protocol, and
OpenAPI Import if the Web Service has a REST architecture.

This will trigger a wizard that will vary depending on the type of Web Service
selected. Finally, if the Web service is SOAP, GeneXus will automatically create an
External Object associated with the Web Service and the structured data types
required for managing its data.

Otherwise, if it was REST, several GeneXus objects will be automatically created
(and we will usually include them in a module, for example, WebServices). Also,
they will allow us to automatically run the service through these objects in our KB.
The wizard will leave in an API folder the programs to invoke, and in a Model
folder the SDTs to manage the data.

Demo: Acceso a webservices SOAP

#t| CountrylnfoService X

Structure

Structure Type
X CountrylnfoService
— _) = {7] Methods
w4 WebPanelCountryListFromWebservice X [7) ListofContinentsByName CountryInfoServicetContinent
[Web Layout {+] ListOfContinentsByCode CountryInfoServicetContinent
[7] ListOfCurrenciesByName CountryInfoServicetCurrency
{7] ListofCurrenciesByCode CountryInfoServicetCurrency
—-{7] Currencytame Character{9999)
:| (@ sturrencylSOCode Character(9999)
f ListOfCountryNamesByCode CountryInfaServicetCountryCodeAndName
Get countries list £ e S oty [nfoServicetCountryCodeAndName |7
& CountrylnfoServicstCountryCodadndName X
[Structure
MName Type
IS0 Code Country name -—;—.Cm._m{r.\r]nf.nSE‘r\‘.vl(‘e‘lc.n;Jr.m:yCI;de-"-ndilar;\E ’
&CountryListitem(0).sISOCode &CountrylListitem(0).sName sis0Code Character(9999)
Name Type sName Character(9999)
& [varabies _
#| & | Standard variables
\ CountrylnfoService Countryl e
[=] countryList CountrylnfoServicatCountryCodeAndName
1 Event "Get countries list’
2 &Countrylist = &CountryInf .ListOfCountryNamesByName () @
Endevent DEMO

Let's start by importing a list of countries from a SOAP web service into
our application.

To do so, we access the menu options Tools/Application
Integration/WSDL import and type the URL displayed on screen
(http://webservices.oorsprong.org/websamples.countryinfo/Countryin
foService.wso?WSDL), and click on Next.

We see that a service called CountrylnfoService was found. To order the
imported objects we are going to save them in the SOAPWebService
folder, leave the suggested prefix, and click on Next.

We click on the “+” sign and on the Service Description node. Note that a
list of the functions offered by the web service opens, such as:
ListOfCountryNamesByName to get the list of country names,
CountryCurrency to get a country’s currency, CountryFlag to get an
image of its flag, etc.

We click on Import so that GeneXus imports the web service definition
and we see that in the output window we are informed that a series of
structured data types and other components are being imported. At the
end, we confirm that the SOAPWebService folder appears in the
KBNavigator, and in its contents we find the external object
CountryInfoService and a series of SDTs that will allow us to store the
information received from each method of the service.

If we double click on CountrylnfoService, we can see that all the methods
offered by the CountryInfoService web service have been incorporated to
the external object, detailing the necessary parameters of each method

and what type of data it returns. In particular, we're interested in the
LisfOfCountryNamesByName method, which will return a list of countries ordered by name.

Now we create a web panel called WebPanelCountryListFromWebService. It its variables, we
create a variable of CountrylnfoService type that automatically takes the data type of the
external object.

If we return to the definition of the external object, we see that the data type returned by the
LisfOfCountryNamesByName method is an SDT called
CountrylnfoServicetCountryCodeAndName. We open it and see that it stores the ISO Code
of the country and its name.

Let’s return to the web panel, create a CountryList variable of the data type SDT
CountrylnfoServicetCountryCodeAndName and set it as a collection.

Now, in the form, we drag a button with the event name: Get countries list, double click on it
and in the event we insert the variable &CountryList and assign it the variable
&CountryinfoService. If we type a period, we see that we can access all the methods of the
web service, so we choose ListOfCountryNamesByName.

We return to the form and drag the CountryList variable based on the SDT and press OK.
We run it.

If we open the web panel WebPanelCountryListfromWebService and press the button Get
countries list, we obtain the list of countries in alphabetical order with the ISO Code of each
one of them, as we expected.

This data can then be used in our travel agency application as a selection list to filter by a
country, or in different uses.

Demo: Acceso a webservices REST con protocolo OpenAPI

B GetCountries
< c

0 | K2AN

& appsw

NZISe x +

vaggerhub.com/apis/K2ANZ/GetCountries/1.0.0

g%ggé:erubn

GeneXus actualmente puede
importar OpenAPI version 2.0

€ GetCountries v 1.00-

A ! nfo

Tags
o>

@

B Rest ~
I GET
GET
GET
GET
GET
GET

GET

Jrest/v2/name/({name}

Jrest/v2/region/{region}

Irest/v2/c

Jrest/v2/lang/{lang}
[rest/v2/currency/{curren

Jrest/v2/alpha/{alphaced

Models ~

MODEL
MODEL
MODEL
MODEL

MODEL

Az O

- https

Jrest/v2/name/{name}:

- Rest
Get By Country Name
GetByCountryName
- application/json
apital/{capital) o - name

path
CountryName

string

Irest/v2/all
oK
° g array
Ci it
ountries 3
Getall [1
Jrest/v2/region/{region}:

RegionalBlocs

Translations 3 - Rest

Languages Last Saved: 10:04:32pm - Jul7,2019

3 Q Export ~

< Client SDK
Restcountries < Server st
m < Documentation
Base URL: restcountries.eu]

API for restcountries eu

Schemes

HTTPS ~

Rest Operations about Rest v

[cer [-

[cer [mmyS— -

frest/v2/capital - DEMO
/{eapital}

Let's look at the case of importing a REST web service that complies with
the OpenAPI specification, also known as the Swagger specification.

The example is obtained from the web page:
https://app.swaggerhub.com, an API called GetCountries. We choose the

Download API option and download the .yaml file.

Demo: Acceso a webservices REST con protocolo OpenAPI

@ sSwrnPage X G Gedll X

{} openaPl import X Stracture
+ RESTOpenApiWebService) Type
File Path/Url Ol R
« Ap & GetAll
; . N . alphazCode VarChar(256)
Module/Folder | | RESTOpenApiWebService 2 GetAllApi neacace vacrre
o ¥ GetByAlphacode altSpelings
Gancel ton -
«.* GetByCapital [y Numeric(10.2)
+* GetByCountryName = 4 borders
rem VarChar(2s6)
+* GetByCurrency colegcodes
«* GetBylLang Tem VarChar(256)
eapttal VarChar(2s6)
Output »* GetByRegion doc Varchar(2s6)
« Chent currencies
Show : General X|lQs em Currencies
Importing Procedure 'GetAllApi'... Successful «* ApiBaseUr demonym VarChar(256)
Importing Procedure 'GetByAlphacods'. .. Successful 4+ Model flag VarChor(256)
Importing Procedure 'GetByCapitsl’... Successful g Mumeric(10.2)
Importing Procedure 'GetByCountrylame'... Successful s Countries Janguages
Importing Procedure 'GetByCurrency’... Successful 4 Currencies, Rem Languages
Importing Procedure 'GetBylang'... Successful Jating Numenc(10.2)
Importing Procedure 'GetByRegion'... Successful 0 GetAll name varchar(zss)
Importing Procedure 'OpenAPICommon.DateTolsonFormat®. .. Successful & Langusges natnetiame VarCher(256)
Importing Procedure 'OpenAPICommon.DateTimeTolsonFormat' ... Successful = numercCods VarChar(zse)
Importing Procedure 'OpenAPICommon.BooleanTolsonFormat' ... Successful #r) RegionaiBlocs popadsien Mumenc(s.0)
Importing Procedure 'OpenAPICommon.VarCharTolsonFormat ... Successful &, Translations region VarChan(z6)
Importing Procedure 'OpenAPICommon.NumericTolsonFormat' ... Successful
Importing Procedure 'OpenAPICommon.GUIDTolsonFormat’ ... Successful
Success: OpendPT Import
GetAllApi(&GetAllOUT, &HttpMessage, &IsSuccess)

DEMO

Next, we select Tools/Application Integration/OpenApi import and choose the .yaml file we had downloaded.
As a folder we type RESTOpenApiWebService and click on Next.

We see in the Output window that several elements are imported and when finished we open the destination
folder. We can see that the API folders were created containing the methods that we can invoke, the Client
folder with the ApiBaseURL method and the Model folder containing several SDTs that are the data types
returned by the previous methods.

If we open the SDT called GetAll we can see all the data we can retrieve from the countries. And if we want to
get the list of countries, we can invoke the GetAllApi method that will return the data in the variables
&GetAllOut (collection of GetAll elements), &HttpMessage and the Boolean variable &IsSuccess.

Next, we can run through the &GetAllOut collection to get the country data.

Web Services / Introduction GeneXus’

Example of use of a REST Web Service

. % [Properties

Sample Marketplace sddate £ F | Finer %

TOP NEWS

K2BAudit 4R Draw

Name Folder Last Opened

= [
Ouspur "

Show: Background Build [| 3| Findk

| DEMO

[DEMO: https://youtu.be/bvmt0Gjcxpw]

To import the Web Service, we go to Tools/Application Integration and select OpenAPI Import. In the File Path / URL we
type: C:\Models\TravelAgency\CSharpModel\Web\default.yaml| because it is where the Rest APl documentation was
generated, and select the WebServices module as target. We confirm that everything has been imported correctly; if we
open the WebServices module, the imported procedure is located in the API folder. Also, we see that in the Model folder
there is an SDT called CreateNewAirlineWSInput, and if we open it we see that the parameters we need to pass to the
service are available here.

To test whether the Web Service works correctly, we created a web panel called CreateNewAirlineUsingWS. Next, we
drag a button to the form and call the event Create airline. We open the variables and create a variable
&CreateNewAirlineWSInput which is automatically set as SDT type.

In order to receive feedback about the result of the Web Service execution, we also created a variable &IsSuccess and
another one &HttpMessage. Note that the types are assigned by default.

We double-click on the button and in the event we load the members of the SDT; next, we invoke the Web Service passing
the SDT as a parameter, and finally we write the following code to show messages on screen.

We press F5... We see the lines that we have entered... And we execute the webpanel that we have just created.
We press the button and see that the service informs us that the airline was created correctly.
To confirm it we select the Airline transaction... And see that the airline we wanted has been actually added.

Web Services / Introduction GeneXus’

Example of use of a SOAP Web Service

https://training-legacy.genexus.com/en/training/global/courses/genexus-en/genexus-15-course-analyst#web-services-gx15

Here we saw an example of use of a Web Service of REST type. To see how to use a SOAP service, you can watch this video.

Web Services / Introduction GeneXus’

Example of use of an ODATA Web Service

https://training-legacy.genexus.com/en/training/esp-en/main/ampliacion-general/web-services-that-access-the-providers-
database-pdf

And if you want to see an example of use of a Web Service with OData protocol, read the following document.

Objects to be published

API Object

as services:

Procedures
Data Providers

GeneXus’

I\

! AP Clients

We will now see another way to publish objects as services, using the API
object.

The API object (Application Programming Interface) is a GeneXus object
that allows us to programmatically define an access interface to objects of
our application, such as procedures or data providers.

This means that an external application will be able to access these
objects published as web services.

The API object adds an intermediate layer that separates the interface
from the implementation details, so that future programming changes to
objects do not affect the way they are invoked by external applications.

For example, a mapping is made between the internal name of the object
in the KB and the name with which it is exposed as a service. Also, you can
change the type and name of the parameters or change the access path,
without this affecting the way the service is invoked.

This abstraction provides significant flexibility because we can evolve our
services without forcing the applications that use them to change their
code to accommodate those changes.

API Object (continued)

5| ~F | Fitter
New Object X
API: API1
Select a Category: Select a Type: E
.tAPI Tvansac(inn Name AP
UserInterface £ Data Provider
BPM .
Chatbots = Data Selector Description API1
I5
R E=Data View
esources .
Documentation -i-DOmam Main program True
Extensibility . Procedure
Deploy 4 Structured Data Type REST Protocol True
Reporting [, Subtype Group
Test
AL gRPC Protocol False
Creates a new 'API Generate OpenAPl interface No
Services base path API
Name: [Pt
Description: [API1 Module/Folder Root Module
Module/Folder: Root Module - Qualified Name API1
Cancel Object Visibility Public
Generate Object True

To create an API object, go to the Data Management category and select
the API type. In its properties we can define at design time its name,
address, and protocol to be used, among other things.

The gPRC protocol is a modern open source framework developed by
Google, which allows calls to remote procedures with high performance
and in a bidirectional way.

12

API Object (continued)

Start Page X .t APIlAttractionsinfo™ X

it
1: AttractionsInfo{
2
3 RankingCountriesAttraction(out:&5DTCountries) => RankingCountriesWithAttractionsQty(out:&SDTCountries);
4i
5 ListAttractionsByName(in:&NameFrom, in:&NameTo) => AttractionsByName(in:&NameFrom, in:&NameTo):
nl StartPage X o APlAttmctionsinfo* X
|
Name Type

| variables
Start Page X .* APlAttractionsinfo * X @Sta”dardvanames

Pgmdesc Character(256)

Pgmname Charac

RestCode Numeric(3.0)
RestMethod HttpMethod, GeneXus

RestMsg Character(255)

After - .
=2 E Autodefined Variables
Before SDTCountries SDTCountries
NameFrom Attribute:AttractionName
NameTo Attribute:AttractionName

The API object has three sections: Service Source, Events, and Variables.

The name of each service to be published is defined in Service Source,
through a declarative syntax, with the corresponding parameters and the
name of the GeneXus object in our KB that we are exposing as a service,
with its corresponding parameters.

In the example, we see that the data provider that we previously created
under the name RankingCountriesWithAttractionsQty is being published
as a service under the name RankingCountriesAttractions, and the
parameters that we expose are the same as those of the object.

The same is true for the AttractionsByName list that we publish under the
name ListAttractionsByName.

In the future, this definition will allow us to change the name or
parameters of the GeneXus object without changing the definition of how
this object is published.

In the events we have the Before and After event, with which we can
perform actions that are executed before or after the invocation of the
object as a service.

In the variables there are some of the standard type, which allow us to
define or change characteristics of the APl object at runtime.

13

Web Services / Introduction GeneXus’

More information about Web Services

WSDL: https://wiki.genexus.com/commuwiki/serviet/wiki?6181

OpenAPI: https://wiki.genexus.com/commwiki/serviet/wiki?31864
OData: https://wiki.genexus.com/commwiki/serviet/wiki?40713
API Obiject: https://wiki.genexus.com/commwiki/serviet/wiki?46151

For more information about Web Services in GeneXus, click on these wiki links.

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

15

