
………..……………………………………………………

Web Services. Advanced topics

Consuming SOAP services with GeneXus

Now let's see how we can test a SOAP service published with GeneXus, from
GeneXus itself, importing it as an external object.
Then we will focus on some more advanced concepts that make it more flexible to
consume this type of services.

1

………..……………………………………………………

Testing the procedure published as a SOAP web service with GeneXus

To import the SOAP service we published, we go to Tools /Application integration /
WSDL Import and write the same WSDL we tested before.
[http://localhost/TravelAgency_ExpertCourseNETLocal/GetAttractionsByCountry
WS.aspx?WSDL]

In step 2 of the wizard, we type the name of a destination folder and press Next.

In step 3, we see the structure of the service with two nodes. If we open the
Service Description node, we find a single method called Execute, and if we click
on it, we see in the screen on the right that it receives the country identifier
CountryId as a parameter.

By going to the KB Explorer, we can see that the folder we defined was created
and if we open it, the external object appears. If we open the object, we can see
that it has only one method defined called Execute and that it receives by
parameter the CountryId, as we programmed it in the procedure.

2

………..……………………………………………………

Testing the procedure published as a SOAP web service with GeneXus

Now, to test the web service that we published, we create a web panel named
AttractionsByCountryFromWS and set it as main. In its variables section, we define
the &CountryId variable, and an SDTAttractions variable that is based on the SDT
collection of the same name. We also create a variable with the same name as
that of the external object so that it is of that type.

We define the &CountryId variable for the form as a Dynamic Combo with the
Item Descriptions property set to CountryName and the Empty Item property set
to True.

In the events, we program the ControlValueChanged event of the Dynamic combo
box, so that when we choose a country, the event is fired. Inside the event we
write the invocation to the web service using the variable
&GetAttractionsByCountryWS, period, Execute and passing as parameter the
country identifier.
We place this invocation inside the brackets of the FromJson method of the
variable &SDTAttractions, which will contain the collection of attractions returned
by our web service.

3

………..……………………………………………………

Testing the procedure published as a SOAP web service with GeneXus

If we run the web panel, we see that by choosing a country, all the tourist
attractions of that country are displayed, returned by our web service that
accessed the database to obtain them.

4

………..……………………………………………………

SOAP web service with more than one method

Let's also test the service we published with two methods.

To invoke the service, we made a copy of the web panel we had created. We
added two buttons with the captions “All attractions by country” and “Attractions
by country with trips.”

We created the variable with the same name as the external object and
commented the ControlValueChanged event.

In the event of the first button, we make an invocation similar to the one we had,
using the new variable and invoking the AllAttractionsByCountry method, passing
it as parameter the CountryId.

We do the same for the event of the second button; that is, we invoke
AttractionsByCountryWithTrips, passing it as parameter the CountryId and the
value 2, so that it retrieves only the attractions of the selected country that have
at least 2 trips.

We execute the web panel because it is main.

5

………..……………………………………………………

SOAP web service with more than one method

We select the country France, press the first button and see that it brings all the
attractions of France. If we press the second button, it brings the Eiffel Tower and
the Matisse Museum, which are the only ones that have more than one trip
registered.

If we open Work With Trips, we verify that only these attractions in France have
more than one trip registered.

6

………..……………………………………………………

Consuming secure SOAP web services with GeneXus: WS-SECURITY

WS-SECURITY (WSS)

Something that should be taken into account for web services is the security of the
information that is transmitted.

In general, when it is mandatory that the data structure and operations remain
unchanged and authentication or sessions are required, the SOAP protocol is used.

To add security to the SOAP message, many service providers use the WSS (WS-
Security) protocol, which adds a digital signature, encryption, and authentication
methods that ensure the integrity of the message (i.e. that the message was not
modified during transmission), its confidentiality (that the message is not seen by
third parties), and that the authentication is secure (that the message credentials
are not compromised).

This security is added at the web server level, using specific third-party tools.

The mechanism is based on modifying SOAP messages, specific SOAP headers are
included and the SOAP body is modified with information used to ensure integrity
and confidentiality. These modifications involve:

- Adding a security token specifying the credentials of the message author.
- Adding a description of how the message is signed (key used, algorithm, what
part of the message is signed) and its signature.
- Adding a description of how the message is encrypted (encryption key, algorithm
and what part of the message is encrypted).

7

………..……………………………………………………

Consuming secure SOAP web services with GeneXus: WS-SECURITY

GeneXus WSSecurity Data Type properties:
- WSSecurity
- WSSignature
- WSEncryption
- WSSecurityKeyStore

EXAMPLE:

GeneXus WSSecurity Data Type:

https://wiki.genexus.com/commwiki/servlet/wiki?44552

With GeneXus we do not publish web services with WS-Security, but we can
consume third-party services that use that protocol, using native functions
provided by .NET or Java, which we enable with the Use Native Soap property.

The SOAP protocol uses the XML standard for the definition of the request and
response messages, and the Use Native Soap property determines the way in
which the XMLs will be generated. If set to Yes, the XML serialization will use
functionalities provided by the platform language; that is, instructions from the
.Net framework or Java language will be used to generate the XML at a low level. If
set to No (which is the default value), GeneXus will be in charge of generating the
XMLs used by the service.

GeneXus also provides specific data types to consume WS-Security web services
and predefined constants that make it easier to use these data types.

8

………..……………………………………………………

Tracking and routing SOAP web services with GeneXus: WS-ADDRESSING

GeneXus WSAddressing Data Type:

EXAMPLE:

https://wiki.genexus.com/commwiki/servlet/wiki?44549

In certain applications, it is very useful for the consumer of a service published by
us to be able to send a response to the server that publishes our service.

GeneXus allows us to track and route SOAP web services via WS-Addressing, also
enabling the Use Native Soap property.

WS-Addressing is a World Wide Web Consortium (W3C) protocol that specifies
how a service consumer can indicate the endpoint to which the service should
send its response (and/or send SOAP failures), in an invocation.

The client sends a SOAP request to the service and the service infrastructure must
handle the request asynchronously (so that the client does not have to wait for the
response). The service implementation generates a response and returns it to the
service component, which interprets the WS-Addressing headers and
automatically forwards the SOAP response envelope to the URI mentioned in the
ReplyTo header.

This is done using two structures: Headers and EndPoint References.

The power of WS-Addressing is that the service consumer can specify to which
endpoint the response should be sent. It is not hard-coded in the service
implementation; instead, it is specified by the consumer.

Information on the WSAddressing data type used by GeneXus can be found in the
wiki.

9

………..……………………………………………………

Location of a SOAP web service

Web Service

Server

DB

• Host
• BaseUrl
• Port
• Secure
• Resource Name
• AuthenticationUser
• AuthenticationPassword
• Timeout
• CancelOnError

LOCATION

SOAP

Now let's see what the location of a web service is.

Web services run on a web server, so each web service is identified by a

URL, from a certain host and on a certain port. It also has other

characteristics when it is executed, such as the security it uses,

authentication method, credentials, etc.

These values are assigned by default by GeneXus when we publish a web

service, and when the web service comes from a third party, the service

provider assigns these characteristics.

This set of properties that determine where and how a remote service is

executed is called “location.”

When invoking a SOAP web service, it is possible to change its location and

assign other values than the default ones.

This is particularly useful when, for example, we are running a service on a

development server and we want to run it on a production server. Although

the code that is executed is the same, when the host address and other

properties are changed, it is considered a different service from the first one.

We can change the location of a web service at generation time (to change

the default values assigned by GeneXus) or at runtime, by code, when we

consume the web service.

10

………..……………………………………………………
10

………..……………………………………………………

Location of a SOAP web service

Let's go back to the example of the GetAttractionsByCountryWS procedure that
we published as a SOAP web service to obtain data of attractions by country and
then consumed from the AttractionsByCountryFromWS web panel, to test it.

In the web panel events where we show the data returned by the service, we can
obtain the location of the invoked web service by assigning a Location variable, of
Location type, with the data returned by the GetLocation method to which we
passed the name of the External Object as a parameter.

This allows us to assign different values to the location properties, such as
changing the host, the base URL, the port, the resource name and other service
data. This is very useful when we have a service running on a server and then we
want the service to run on another server. For example, when we move from the
development server to the production server, or when we want to reuse a service
in another application and we want it to run on another server.

Note that after executing the web service, we use the GetSoapErr() and
GetSoapErrMsg methods to obtain information about the result of the execution.
We will look at these concepts in more detail later.

11

………..……………………………………………………

Customizing the location of a SOAP web service

Location.xml

<GXLocations>

<GXLocation name="GetAttractionsByCountryWS_EO"> // Name of the External Object

<Common>

<Host>"www.servername.com"</Host> // Don’t include protocol (i.e. HTTP/HTTPS)

<Port>443</Port> // Port number

<BaseUrl>/services/</BaseUrl> // Start and end with a bar: /baseurl/

<Secure>1</Secure> // 1 = HTTPS, 0 = HTTP

<Proxyserverhost/>

<Proxyserverport/>

<Timeout/>

</Common>

<HTTP>

<Authentication>

<Authenticationmethod/>

<Authenticationuser/>

<Authenticationpassword/>

<Authenticationrealm/>

</Authentication>

<Proxyauthentication>

<Proxyauthenticationmethod/>

<Proxyauthenticationrealm/>

<Proxyauthenticationuser/>

<Proxyauthenticationpassword/>

</Proxyauthentication>s

</HTTP>

</GXLocation>

</GXLocations>

Assigning Location variable from database

The data that we assign to the location of a service can be parameterized in the
database. In the example, we create a WService transaction and then, with a For
Each command, we access the table containing the values of the attributes to
assign the location properties.

In addition to defining a variable of the Location data type and changing the values
of its properties by code as we have just seen, another way to assign the values of
a location is by using a Location.xml file that we place in the web folder of our
target environment; for example, the Web folder in a .NET model or web-inf in
Java.

When GeneXus compiles the application, if it finds a file named location.xml in the
folder mentioned above, it reads it and assigns the location values dynamically at
runtime.

The format of the location.xml file is as shown on the screen.

In GXLocation Name we assign the name of the external object associated with our
web service.
Host is the name of the server that will host the service, without including http or
https; that is, only www.servername.com, for example.
The port is a numeric value that depends on the type of server; it is recommended
that the base URL be between slashes, for example /services/.
Secure with the value 1 indicates that a secure server will be used; that is, with
HTTPS protocol and the value 0 for HTTP.
Proxyserverhost and Proxyserverport are used when there is a proxy server

12

………..……………………………………………………

between the client and the server providing the service.
Timeout is assigned with the maximum time in seconds that the system must wait for a response to be
sent to the server after each request. If the value 0 is assigned, it means that the waiting time is
indefinite.
Then, if required, the authentication characteristics of the HTTP communication can be defined.

The properties assigned at runtime to a variable of the Location data type will take precedence over
those assigned at runtime through a location.xml file; in turn, the latter will take precedence over
those assigned at generation time. This allows for more dynamism in the configuration of locations.

12

………..……………………………………………………

Error handling in a SOAP web service invocation

When we invoke a SOAP service and assign values to a location variable, we can
assign a value to the CancelOnError property, which allows us to obtain the result
of the operation and handle errors. Here is a typical example of use.

The behavior of the service will depend on the value assigned to the
CancelOnError property.

For example, if we assign the value 0, the program that invokes the web service
will always cancel the execution at the end of the invocation. This is the default
value.
If we assign the value 1, the calling program will cancel the execution if an error
occurs.
If we assign the value 2, the calling program will NOT cancel the execution if an
error occurs; to obtain information about the error we can use the GetSOAPErr()
and GetSOAPErrMsg() functions.

The GetSOAPErr() function returns a numeric value corresponding to the error
code of the last SOAP operation.
If the function returns 0, no error occurred. Otherwise, the code depends on the
type of error and it varies if the error occurred in the client or in the server.

The GetSOAPErrMsg() function returns a description of the error of the last SOAP
operation, which allows us to give a more user-friendly message.

A table of possible error codes, both in the client and in the server, can be found in
the Wiki article “Error Codes and Messages for Location Data Type.”

13

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

14

