
Web panel object. First steps



Web Panel Object

Implements a highly flexible web screen
Example:

Variables: input controls (not read-only)

Web panels are the most versatile objects provided by GeneXus.

As we've seen in some examples, all web panels have a web form consisting of
a web page that enables us to design and provide a variety of functionalities.

In the example we saw that the variables that we include in the web form are
enabled for the user to assign values to them. This means that they are input
controls; in other words, they are not read-only.

2



Example: variables in Web panel

Table

Country

Specifically, this variable, of the dynamic combo type, expected the user to
select one country from those loaded in the combo. After pressing the button

Attractions By the associated event would be executed invoking
the PDF file containing a list of attractions in that country.

Here, the database is accessed only to load the values.

3



Example: variables in Web panel

In these other variables, the user would enter a range of attraction names so
that when this other button is pressed the PDF list showing the attractions
within the range received by parameter would be invoked.

4



Example:

Can we implement this list in the 
previous web screen, which prompted 
the user for the filters? 

Remember the layout. In the Source, we programmed the database query with
the For Each, filtering by name.

But, why do we define these queries through PDF listings instead of doing it
directly on the screen where the user is required to enter data for the filters?

5



≈

Grid with attractions

Why not add here a grid showing the desired attractions instead of the
buttons?

The rows of the grid will be similar to the printblock that shows each
attraction.

6



Web panels: interactive queries to the database

Attributes in web panel are output 
attributes: read-only

Apart from allowing the definition of variables to be used in actions
programmed in buttons, web panels allow us to implement interactive queries
to the database, which is in fact their main purpose.

implies that it is possible for the user to enter many different
values in variables in the web page and then query the database for data
matching the values entered, using them as filters, as we will see next.

Let's now save this web panel with a different name. We will be implementing
something similar to a Work With element, so we will call it
WWAttractionsFromScratch.

We remove the buttons and the associated events because they will no longer
be necessary. Now, we insert a control of the grid type below the variables.

A screen opens up in order to select the attributes and/or variables that will be
this grid's columns. Since we want to show the same we showed on the PDF
listings, we select the AttractionId, AttractionName, AttractionPhoto and
CountryName attributes
and then press OK. We will then see that a grid has been created with these
columns. We may change the column titles by editing the properties of each
attribute comprised in the grid columns.

The attributes in a web panel form are, by default, output attributes. That is to
say that they are readonly. This means that GeneXus understands that it must
go to the database to search for their value and show it to the user.

7



Web panels: interactive queries to the database

Let's press F5 to run our new web panel, just as we have it so far.

We can see that all the attractions have been printed, with the data we
indicated (ID, name, country and photo). We will also see that they have been
ordered by AttractionId.

8



Grid with attributes is the equivalent to a For each command

=

Transacción base

The mere grid with these attributes drove GeneXus to understand that it should
go to the database to navigate the Attraction table, and then access Country to
bring the country of the attraction, as we did with the For Each command
(without the order and where clauses).

We can see that one of the grid properties is called Base Trn. This property is
similar to the base transaction of the For Each command. In fact, to make sure
that the Attraction base table is selected for the grid, as we want, we should
indicate the base transaction, just like for the For Each command.

9



Grid with attributes is the equivalent to a For each command 

In addition, note that an Order property is available for the grid. This
property corresponds to the Order clause of the For Each command.

So, if we want to order by country name, as in the listing, in the Order
property we have to write the CountryName attribute.

10



Grid with attributes is the equivalent to a For each command

Navegación 
para cargar el 
combo 
dinámico

We press F5, and we will see that the grid is now ordered by country name.

Note that the navigation list of the web panel here indicates the navigation
that has to be made to load the combo box of the &CountryId variable, which
we have not used at all for the time being.

And, here, it indicates the navigation that will have to be made to load the
grid. The list for this loading is identical to the list for a For Each command. As
we can see, it has chosen the Attraction table, which will be run through
according to the CountryName attribute of the Country table, the attribute
that we specified in the Order property. That is, it will have to access that
table to order how the Attraction table will be run through, and to show the
CountryName of each record of the Attraction base table. It will run through
the entire Attraction table.

11



Filter grid data

So far, we haven't done anything with variables. But we wanted to use them to
filter the data displayed in the grid, by country and as well as by attraction name.

In AttractoinsList we filtered by country. How do we indicate this filter for the
grid? Through the Conditions property.

12



Filter grid data

Note that, by default, the combo box takes the value Brazil, and that the grid
only shows an attraction in Brazil.

If we select France, we see that the screen is refreshed and the grid is loaded
again, this time with the attractions in France.

13



Conditional filtering of grid data

Value None

We will probably want the combo to be first displayed without a selected
value, with the attractions of all countries displayed.

To do this we must edit the combo box properties... and set the Empty Item
property to True. This will add a option to the combo. It will
correspond to an empty value.

14



Conditional filtering of grid data

So, we open the Conditions property and indicate that we want to have
this condition applied only when the combo's value is not empty. When it
is empty, the condition should not be applied.

15



Conditional filtering of grid data

We run it...

and see how the (None) value is displayed in the combo. In addition, in this
case there is no filtering for the attractions, and all of them are displayed.

If now we choose, France, for example, since the variable's value is not
empty, the filter is applied and the attractions in France are displayed.

16



Filtering grid data by multiple conditions

We would also have to add the filters by attraction name that we want added to
the other filter. So, if in the listing we filtered in the For Each command using
these two Where clauses... we will add them to the grid as conditions.

AttractionName greater than or equal to the value of the &AttractionNameFrom
variable of the form, which may be entered by the user. Once again, if the user
doesn't enter a value in the variable, we will not want this filter to be applied. So,
we use the When clause. This clause may also be used in the Where clause of the
For Each command, in a completely analogous way.

We add the other filter.

17



Compatible orders and filters

We run again. And now we choose to see the attractions between A an F.

For the case when the user selects a country, we may instruct the web panel to
then sort the information by CountryId, and inside CountryId by
AttractionName, or otherwise, by AttractionName. This is meant to optimize the
search of table records.

To do it, we edit the Order property of the grid and write the order first,
conditioned to the selection, by the user, of a country in the combo. In this
case, the data will be filtered by that country, and also the attractions will be
listed in alphabetical order for that country. If the user left the combo empty,
with the value, then the following order by AttractionName will be
selected.

We will not go into further detail here. The purpose of mentioning this was just
to show that we can also condition the way in which we want to have
information ordered. It works exactly like in a For Each command.

We run it Here, it ordered by AttractionName. And if we select France, it will
order by France's ID, and inside it, by AttractionName.

In sum, attractions will always be shown in alphabetical order.

If, within France's attractions, we want to see those between the letters A and F,
we will see that the grid will load filtering by the three conditions we had
added.

18



Extended Table

For each

Base Table

For each
Order
Where

~

~

In summary

We implemented a web panel where, in addition to including some variables
for which the user enters values, we also inserted a Grid control with
attributes.

The attributes correspond to information in the database, so GeneXus
understands that it has to search for it. A grid with attributes is like a For
Each, so, we have the Base Trn property, as in the case of a For Each, to
specify the level of the transaction whose associated table we want to run
through. This table is called grid base table. When we don't specify it, as it
may also be the case with a For Each command, then GeneXus will infer it
based on the attributes used. However, we will not be considering such case
at this point.

All the grid attributes will have to belong, as in a For Each command, to the
extended table of that base table. Just like in a For Each we order data with
the Order clause and filter the data to be returned by the query with one or
several Where clauses, in order to do the same with the grid we have,
respectively, the Order and Conditions properties.

19



For each
Main_Code

endfor

Print Attractions

Grid loading

In a For Each command we program what we want to do with each record
that meets the conditions inside its body.

For example, in the list of tourist attractions, the print Attraction command
sends for print, in the output, what in this case would be the grid line, but in
the case of the grid, we need not indicate it because it is done automatically.

20



For each
&trips = Count(TripDate)
Print Attractions

endfor

Grid loading: Load event

But let s suppose, for example, that we have a Trip transaction that records the
trips offered by the travel agency. In a very simplified way, suppose that for
every trip we only record the date on which it will take place, and its
description; and then the tourist attractions that will be visited during that trip
are recorded. Let s also suppose that in the list of tourist attractions we also
want to see the number of trips associated with each attraction.

To do so, we only needed to define a numeric variable &trips, and inside the
body of the For Each command (that is to say, when the For Each command is
positioned on the record of its base table about to be processed) assign it the
result of counting the trips of that attraction, to then include that variable in the
print block.

21



For each
&trips = Count(TripDate)
Print Attractions

endfor

Event Load
Code

endevent

Grid loading: Load event

To do the same in the web panel, we right-click on the grid and select Insert
Attribute/Variable. We create the &trips variables, with type Numeric(4,0), and
we move it to the position where we want inside the grid. This corresponds to
having inserted the variable in the print block. But, where do we indicate how
the calculation is done? In the case of the For Each command, we did inside its
body. And where do we do it in this case?

To do this we have the system's Load event.

22



Grid loading: Load event

For each
&trips = Count(TripDate)
Print Attractions

endfor

Event Load
Code

endevent

AttractionId AttractionName CountryId CityId …

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

Inside it we program what we want executed when we're positioned on a record
of the grid base table, right before the corresponding line is loaded in the grid.

In this case, there is where we would assign a value to the &Trips variable.

The Load event will be automatically executed for every record of the grid base
table that meets the filtering conditions, immediately prior to the addition of the
line to the grid.

23



For each
&trips = Count(TripDate)
Print Attractions

endfor

AttractionId AttractionName CountryId CityId …

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

Event Load
&trips = 

Count(TripDate)
endevent

TripAttraction

TripId*
AttractionId*

Grid loading: Load event

That's why, when its code is executed, we know we're working with a record
from the base table and its extended table; and this inline formula will not count
all the trips. Instead, it will count only those from the TripAttraction table that
correspond to this AttractionId, that of the Attraction record that we're about to
load in the grid.

Note that even though the TripDate attribute belongs in the Trip table, GeneXus
will not choose the Trip table as the base table, but the TripAttraction
table. We will not go into this here, but TripDate is in the extended table of
TripAttraction, table which has a relationship to the Attraction table. GeneXus
looked for a table which allowed relating the data.

24



Total Trips: 6 Variable outside the grid to total?

Variable outside the grid to calculate the total

Let's implement it in GeneXus. We've already created the Trip transaction. Now
we go to the events section of the Web Panel. In this combo box, we're offered
predefined events; that is to say, system events that are generated at specific
moments, and for which we may program code.

Among them is the Load event. Here we will program what we want executed
every time we're positioned on a record from the Attraction table, before
loading the line in the grid.

We run it...

Now we want to add the sum of trips in which the attractions displayed on the
grid are included. That is to say, the sum of the values in this column:

25



AttractionId AttractionName CountryId CityId …

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

Event Load
&trips = Count(TripDate)
&totaltrips = &totaltrips + 

&trips
endevent
&trips

&totalTrips

2

2

Variable outside the grid to calculate the total

An efficient way of calculating the value that the variable will have to display
is... every time a line is to be loaded in the grid, we should add the value of
the &Trips variable of that line, to the value calculated so far in &totalTrips.

This means that, in the Load event, after calculating the value of &trips, we
assign to &totalTrips the value that it contains so far plus the value of the
&trips variable.

26



AttractionId AttractionName CountryId CityId …

1 Louvre Museum 2 1

2 The Great Wall 3 1

3 Eiffel Tower 2 1

Event Load
&trips = Count(TripDate)
&totaltrips = &totaltrips + 

&trips
endevent
&trips

&totalTrips

1

3

Variable outside the grid to calculate the total

For the second line to be loaded, the value of &trips is calculated and
&totalTrips will contain the previous value, to which the value of the &trips
variable will be added for this second line, and so on.

Once the last line has been loaded, the &totalTrips variable will have the
desired value.

27



Refresh

Why does it show 9 instead of 3?

Let's run it.

We can see two things: first, the sum is being made correctly; second: because
it is a variable, it is an input method where the user may change the value, and
this doesn't make sense. So, the first thing to do is set it as Readonly.

To do so, we click on the variable in the form and, among its properties, we
change its ReadOnly variable by setting it to True.

We may find it odd that &trips, which is also a variable, is shown as Readonly
even when we did nothing in that sense. When no events have been
programmed at the line level and when they are not run through by code, grid
variables will always be Readonly. We will be seeing this in detail further ahead.

Let's also see what happens if, for example, we filter by France

Instead of showing a total of 3, it shows 9, which is the sum of the value
displayed before 6 plus the 3 that it should be displaying now. Why did this
happen?

After changing one of the filter variables, the web panel loaded the grid again,
meaning that it queried the Attraction table in the database again, and it
executed the Load event again for every record that met the filters criteria. The
problem is that the &totalTrips variable should have been reset, returning it to

28



zero, before the start of the grid load.

Where do we do this? In the Refresh event.

Note that the order in which the events are written is not important. Here we will only
indicate the code that will be run when each one of them is triggered.



Refresh Event

System event: It occurs every time the web panel is to be loaded, before going to the DB to search for information to load the grid 
(right before running the Load event for each line to be loaded).

Let´s now press F5. 

We will see that the total number of trips is now Readonly. To run this web panel
for the first time, three events were triggered in sequence: the Start event, which
is run only when the web panel is opened for the first time, the Refresh event,
which set the variable to zero, and the Load event, as many times as lines were to
be loaded in the grid. In this case, they were 7.

29



Refresh Event

Changing the value of the variable involved in the Conditions causes the Refresh and Load events to be triggered again (not Start). 

Now, if we filter by a country, such as France, we see that the number of trips is
correctly calculated.

Changing the value of a variable that affects the conditions that must be met by
the records to be loaded in the grid causes the Refresh event to be triggered
again (and therefore, the &totalTrips variable is reset to zero), and the database is
accessed to filter and load the records in the grid again. Therefore, the Load
event is triggered again for every attraction in France that is to be loaded.

30



Work With Attractions of the Pattern

Actions over data:
Insert,
Update, 
Delete
an attraction

If we look at the web panel that we have implemented so far, we can see that it
now looks like the object created by the WorkWith Pattern applied to the
Attraction transaction.

Obviously, this object was a web panel.

What's most interesting is that, in addition to allowing us to filter the grid data, the
WorkWith includes the option to run actions over the data. For example, updating
an attraction's data or deleting the attraction or adding a new attraction.

To this end, the pattern inserted two controls at the grid line level, and another
one outside. In any of these three cases, the action associated with each control
consists in calling the Attraction transaction, sending it, as parameter, the mode
in which the transaction must be opened if it is called to update, delete or insert
data. In the first two cases, since Update or Delete will correspond to events of
one line, the ID of the line attraction will be sent as a second parameter to the
transaction, in order to update the data of that attraction, or in order to delete
that attraction. For the Insert control outside the grid, 0 will be sent as a second
parameter, because the attractions in Insert are autonumbered.

This is why the pattern modified the Attraction transaction by adding the Parm
rule, among other things. As we can see, it receives two variables: the &Mode
variable is a standard variable in transactions, 3 Character, which accepts one of
four values indicated in the TrnMode enumerated domain: Insert (INS), Update

31



(UPD), Delete (DLT), and Display (DSP)

Upon receiving one of these four values, the transaction will know the mode in which it
should be opened.

In addition, it will receive, as a second parameter, the attraction ID, in the &AttractionId
variable, for updating, deleting or displaying.



Update action at the grid lines level

We add the image to 
the KB

&Update of Image 
type

In our web panel, we will implement one of these actions over the transactions.
For example, Update. The idea is to show an example of actions over the data.

We will have to insert a control in the grid. In the case of the pattern, a character
variable called update is inserted. It is assigned the text that we see in
runtime. But we will choose to insert an image, which we must insert in the KB to
start with. We will call it updateIcon.

Now we go to the web panel and drag the Attribute/Variable control from the
toolbox to the last grid column, and define the new variable as &Update, of the
Image type instead of character. We remove the title so that it isn't displayed as a
column title and then we need to load that variable with the image we've just
inserted in the KB. Where do we do this?

If the image changed according to the grid line, we would then do it in the Load
event. But since the image will never vary and will remain the same for every line,
then a good option is to do it in the Start event, which will be run only once, when
the web panel is opened.

Now we need to associate an event with that image, so that when the user clicks
on it, the event is triggered and its code is run, where we will invoke the
Attraction transaction.

There are several options available to do this. One of them is to use the click
event of the &Update variable control.

32



This will cause that, when the user clicks on the image for a line, the code that we type
inside this event will be executed. In such case what we will want to do is to invoke the
Attraction transaction. We will pass the Update mode, that is to say, the Update value of
the TrnMode enumerated domain we saw before, and the AttractionId value
corresponding to the grid line where the click was made.



Start Refresh Load

Update action at the grid lines level

Let's run it.

First, we see that the column of the &Trips variable is now editable. We had
not defined it as Readonly explicitly because we had noticed, upon the
execution, that it was already done. As we said, grid variables are first added
as readonly, except when an event is defined at the line level, as in this case,
or under other circumstances that we will not discuss now. Let's set it as
Readonly for the next execution.

We now select a country, like France. And now we click on the update image
for the Eiffel Tower. In update we see the name of the transaction. Now we
modify something... for example, we can change the T in Tower from
uppercase to lowercase.

We now confirm... and since the work with pattern, which we have not seen,
has added a Return command to the transaction, to return to the caller, we
will return to the web panel. This Return command is similar to invoking the
web panel for the first time, so the Start event will be executed in it, followed
by the Refresh and Load events as many times as the number of records that
will be loaded.

33



When is it not possible to include a column in the grid? 

It must be 
in the grid! 

want to 
see it, we 
can hide it. 

That's why when returning all the attractions are loaded, without any filters,
because the variables will naturally be empty when this panel is run again. Do
we have a way to preserve the status that the variables had before invoking
the transaction? Sure, but it be explained here.

What would happen if we hadn't added the AttractionId attribute in the grid?
By clicking on the image to update, what AttractionId would have been sent as
a parameter to the transaction? It would not have that value to send.

Since it will be used in an event at the line level, which will be triggered after
the lines have been loaded, we cannot remove AttractionId from the grid,
because here, we are no longer in the database. The grid has saved, upon the
loading with the Load event, all its column values and nothing else. A later
event will work only on the data loaded in the grid. So, if we don't want to see
this column in the grid, we can hide it. It will continue to be present, though
hidden. To this end, we use the Visible property with its value set to False.

34



When is it not possible to include a column in the grid? 

Before we move on, let's say that, obviously, a web panel can have many
grids on its screen, and not just one. For example, we might want to show all
the categories next to it, in another grid.

Each grid will possibly need to run code as each line is loaded. But how would
we specify this if we have a single Load event?

35



When is it not possible to include a column in the grid? 

If we choose Insert / Event we will see that for the grid control we also have the
Load event. In this case, since we had only one grid, we didn't worry about it.
However, to plan for the future, in case we want to add another one, maybe it
would have been a good idea to use that of the specific grid, which is valid even
when grids are added, instead of using the Load event that is valid only when the
web panel has up to one grid.

Let's try it... We can see the &trips variable was loaded correctly, just like before.

There is also a Refresh at the grid level...
That will always be triggered before loading (but unlike Load, the generic
Refresh is still valid for cases of more than one grid. It will be triggered before
the grids are loaded and then each Refresh and Load events will be
triggered):

try it...

Next, we will see some other features and, above all, we will review all the
events, their logic, and where and how to program them, to clarify everything.

36



training.genexus.com
wiki.genexus.com


