
UX Design

Introduction

VISUAL DESIGN

DEVELOPMENT

So far, we have focused only on the data model and behavior, and we have
not been concerned at all with the visual design of the application.

We could say that we have been doing only development tasks.

2

Thus, we have created and developed a set of objects: some transactions,
some lists, some web panels created automatically by applying the Work
With pattern, and others that we created from scratch.

However, we don't have an organized application yet, and we haven't even
started to envision it that way.

3

VISUAL DESIGN

DEVELOPMENT

That is because we have been learning the basics of GeneXus, focusing on
some parts, but, understandably, this is not the approach we will take when
we start developing a real-life application.

4

UX DESIGN

DEVELOPMENT

Surface VISUAL DESIGN

Skeleton Interface design Navigation design Information design

Structure Interaction design Information architecture

Scope Functional specification Content requirements

Strategy User needs & Business objectives

In fact, the development of an application does not start with the
development itself; it begins after a very important previous stage, which is
the user experience design. There, the conceptual structure of the
application as a whole is organized first. The objective is to obtain a
product that meets the expectations of both the user and the business, and
that communicates exactly what it should in the most effective and
economical way possible.

5

UX DESIGN

DEVELOPMENT

Surface VISUAL DESIGN

Skeleton Interface design Navigation design Information design

Structure Interaction design Information architecture

Scope Functional specification Content requirements

Strategy User needs & Business objectives

This includes the interface design as well as the navigation and information
design. The visual design we see in the finished product is built on this
organizational skeleton. Although we will not go into the details of this very
important task here, we can realize that we will end up viewing the result of
the foundations laid by these previous stages: each one is the basis for the
next.

Only with the resulting surface stage will we have the visual design to start
the actual development.

6

Looking at the GeneXus website we can quickly grasp the User eXperience
decisions that were made when designing this web application: a basic
principle is to achieve a good contrast, and here we see that it was done
with white, black, gray, and red.

The most important actions that the user can do are shown as buttons,
which have a consistent style and therefore can be easily recognized. Their
color depends on the background (black or white), but clearly the main
color for actions and highlights is this one.

7

In fact, if we look at the main navigation menu that will appear as a header
on all pages, the submenus are displayed when going through the options
and this is the color that indicates the active option, which looks similar to
that of the company's brand.

8

We can also see that there will be a footer repeated on all pages, which is
where the language can be changed, following a convention that all
internet users are familiar with: the language can be changed in the header
or footer.

9

Also, note that the font families are consistent, and that they are used in the
same way: the same sizes for the titles, descriptions, and so on.

In addition, it is possible to indicate which information is related and must
therefore be interpreted as a whole, based on how closely the controls are
placed and the spacing in relation to the others, and by alternating the
background color.

10

So, here we have the first set of information....

11

...here is another...

12

... and another one with a light gray background, and so on.

13

If we look down here, we see that this all corresponds to a block of related
information, with this repetitive pattern indicating that there are 3 subunits
of information that are at the same level.

14

Here we see another block where the user will infer a little bit the same as
before. There are cognitive patterns that every user will recognize.

15

For example, let's look at another one: here we find another block of
information, where blocks of information alternate with text on the left, an
image, and then the same two things but inverted, to alternate again.
Clearly this is a narrative block of information.

16

Therefore, alignment, spacing, and grouping of controls will be essential
and we must know how to implement them in a layout.

17

Everything analyzed corresponds to both the design skeleton and to
the visual design itself, where the choices of colors, fonts, and so on are
materialized.

Behind a given design there is a number of fairly abstract decisions aimed
at providing standardization, consistency, and ease of use. We speak of
Design Systems because the design of an application or family of
applications works as an interrelated system.

18

UX DESIGN

DEVELOPMENT developer

designer

frontend
developer

task actor

Until now, we have focused on a single role the developer who is in
charge of development.

But if we look at this new task, that of user experience design, we find
another role that takes the lead in this stage: the designer. He/she usually
makes decisions such as the ones we have seen in the example regarding
the specification of the Design System.

We would be missing the intermediary role that is the frontend developer,
who is in charge of the effective and specific implementation of the design
IN the application. In this case, in GeneXus using the tools provided by
GeneXus to work with Design Systems.

19

UX DESIGN

DEVELOPMENT developer

designer

frontend
developer

task actor

Since we only want to see an introduction here, we will not address the
ways to directly import into GeneXus the design created by the designer in
his/her preferred tool, but we say that this is possible: the designer designs
the screens with a tool such as Sketch or Figma and the frontend developer
imports it into GeneXus, which will automatically build the objects with all
the design incorporated. There the frontend developer will have minimal
work to do.

20

DESIGN SYSTEM UNANIMO

What we will do next is to see how GeneXus already provides a default
Design System that we can customize: Unanimo.

21

We have seen it in action all the time; for example, let's take a close look at
the running Work With. In the central area of the page, there is information
from the attractions Web panel created by the pattern, with uniform criteria
in relation to the countries Work With.

22

v

v

v

Note, for example, that in both cases a search field is available, where
information is filtered by name: here for attractions... and here for
countries. Both fields look identical, and they behave in the same way.

23

We can also notice another similarity: in both screens the same actions are
offered to insert, update, and delete, with the same appearance.

24

Here we see the same 3 actions, and we had also added another one,
outside the grid, to invoke a PDF list. However, note that it is less
highlighted than the Insert button. It is a more subtle button. That is a
design decision.

25

If we go to the transaction to update this attraction we can also see that the
Confirm button is the relevant one, and the Cancel button is more subtle.

The actions are displayed with a predominant color, which is also used for
other things.

26

Now let's notice that when we navigate deeper and choose to see one of
the attractions, it offers the option to go back to the parent.

27

And this navigation is also a consistent pattern. Throughout the application
we will expect this pattern of returning to the screen from which we arrived
at the current one.

Now let's notice that all screens have text that clearly indicates where we
are. Here we are in Brazil's information screen. Let's take a look at its
appearance.

28

Here we are in Countries, with the same appearance.

29

Here in Attractions. And if we choose to update one...

30

...here we are in the Attraction transaction.

The question that comes up: where has the appearance of these texts been
defined (that is, their font, font size, color)? And so, what if we want to
change it, for example, to red? How do we go about it?

31

Let's edit the transaction layout, and let's see the text block that
implements the text that we see at runtime. If we look at its properties this
one appears: Class. The class with this name has been associated with it. It
is here, in this class, where most of the design properties will be defined.

32

If we go to see the text in the attractions Work With, it is also a text block
control, which also has the same class assigned to it. It also has a class
assigned for the cell where the control is located in the table. For now, we
will not pay attention to it.

33

If we now see the view of an attraction, it is the AttractionName attribute
control that marks the page where we are, and it is not a coincidence that it
has this class associated with it.

The question now is this: where are the style definitions of that class
located?

34

If we go to see the properties of the version of the KB we are working with,
among them we see one, Default Style. It has an associated object, which
happens to have the same name as the KB. When we open the window to
make a selection, we see that the types of objects of the KB that could be
specified here are of the Design System type. In our KB we have one that is
created by default in the root module, and that we can modify: it is the
default one, precisely. In addition, there are these other ones in the
GeneXusUnanimo module that come by default in every KB we create, and
will be read-only objects: that is to say, they can be used but not modified.

Let's look for our default object, the Design System that will govern most of
the design of the controls and layouts of our KB. We open it.

35

We have this Tokens tab, and later we will see what it is used for...

36

...and this other one, Styles, which is the most relevant one. It seems to be
empty, but it is not. Note that it is asking to import everything that comes
from this other Design System object, which is one of the Design System
objects that come with every KB and that implement the Unanimo Design
System.

It can be found in the GeneXusUnanimo module, under the References
node.

37

Here the Tokens section is no longer empty.

38

And the styles section is much less so. This is where the classes that are
later associated with the controls are defined. We see that this DSO (Design
System Object) is not starting from scratch either. It is importing all the
definitions of these two. Therefore, we have the DSO of our KB built from
this DSO tree.

We are looking for the characteristics of the heading-01 class....

39

...so we can search for it by pressing Ctrl + F. Classes are selected with a
period. Here we find it.

40

Before going on, let's review what we were doing: the textblock or attribute
controls of web panels and transactions whose function was to show a title
on each screen to indicate where we are had this associated class. These
web panels and transactions have a Design System object defined by
default. It is that of the KB, so they will look for the class properties there.
But for now this object does not have its own classes. It only has the ones
imported from this DSO. It is as if they were copied. That is why we look for
them here.

41

Let's look at the properties it has configured. They include the font family,
font size, and color. What do the dollar signs before fonts, fontSizes, and
colors mean? They are references to tokens. And what are tokens? Names
given to values. In programming, we call them constants. For example,
let's analyze the color property. We are indicating that the color will be
taken from the value of the color constant named -background. Where
should we look for it? In the Tokens tab.

42

But it is not here! So?

Oh, that's right, this DSO is importing two others. Among those that matter
are the tokens. Let's look for our color token in one of those two DSOs,
because it will have to be in one of them.

43

Here the Tokens tab appears very crowded. It is possible that here we will
find what we are looking for. Let's see that the editor is double. And so, if
we select this color token, the one named in the graphical editor
on the right we see a color that on the left is defined with a hexadecimal
value. This color looks familiar, it? It is the one we have seen
repeatedly in the actions and buttons. It has not been named just
for the sake of it.

44

The one we are looking for is the color token named -background. If
the token was given a semantically clear name, we can assume it is the
color that will be used to contrast against the background. Here we have it.

What happens if we change the value of the token, so that it goes from
black to red? Supposedly, with that we will be able to change the color of
the texts that we were interested in, those of the heading_01 class. try
it.

We want to modify its value, but we do not have the change enabled. The
reason is that this object is read-only. So, this customization will have to be
done in our Design System object, that of our application. Let's copy the
definition of the token.

45

Note that tokens are specified within a set of all the tokens of the object.
We will not go into details about the light and dark options here. We will
only say that the token definitions can vary according to these parameters.

46

Therefore, in the Tokens tab of our Design System object we define the set
following the syntax. What we do is simply overwrite the color token that
will be imported along with all the others of the DSO that in turn imports
those of the other ones.

47

We change the color value here, with this hexadecimal...

48

...or, directly, with the value red. Let's save and run.

49

We managed to change the color of the title of each page, but not just that.
We changed the color of many more controls than we wanted. It is that, of
course, the - color token is used in the class of these
controls, but obviously it is also used in many others.

50

If we only want to change it for that class, then... what we have to overwrite
is the class (here we can't, it's read-only). So we copy it...

51

...and paste it into our DSO. But actually, since it is imported we don't need
to overwrite everything, but only the property that we are interested in
changing. We save and run...

52

We press Ctrl + F5 so that it is refreshed... and now it does. Only the color
of the controls that have the heading-01 class associated with them
changed.

53

54

55

Considering everything we've seen so far, what should happen if we
change the value of the color token?

56

Note how the color of the buttons and actions in general have changed.

57

Here we can see that the hover action changes the color and we can
assume that this will be a property of the class that controls the hover
effect. The same goes for the buttons.

58

Even here the visited link is shown in this color, something that we can also
change in the DSO.

59

We talked about the importance of spacing, for example, and of defining
appropriate font families and sizes to be used consistently in the
application. We will not be surprised to find these tokens in Unanimo...

60

61

... they will be used in the classes assigned to the properties to give space
or to choose fonts.

62

On the other hand, how do you achieve alignment and combine
information elements so that they work as a block? That is where GeneXus
controls are involved. Mainly the tables.

In other words, two key players will be involved: the controls in layouts and
their classes in the DSO.

63

In addition, in order to save resources, we will be able to encapsulate
repetitive information units in independent objects that can then be
inserted in the layouts, such as stencils or web components.

64

Even the header and footer are separated in another object, the Master
Page.

65

Here it is. Let's see what happens when we change this text block.

66

In this way, we start to understand how to use a Design System in GeneXus.

67

training.genexus.com
wiki.genexus.com

