

When we built the Stencil at the beginning of this module we chose to model it from the main
table, and from another table for the textblock and the button.

But right there we said that we could also have chosen the Flex control instead of the Table
control as the container, remember?

What's more (I'm going to save our stencil with another name)... we had said that we could
convert at any time a common table like this into Flex and vice versa. When we convert it we
see that the rows and columns disappear, and these properties appear inside the Layout
Behavior group. The first one that catches our attention is Flex Direction, whose default value
is Row, and that will determine that the two elements contained by the flex are arranged
horizontally along a single row, without columns.

It will be a little clearer in Figma.

This symbol appears for the Information frame and this other symbol for the frame containing
the title and the button. These symbols tell us much more than it might seem.

The first one indicates that the elements of the frame (this and this) will be placed along a
row, i.e. horizontally: first one, then the other. And also, that these elements can have different
heights, but that they will be aligned in the center.

Actually, they have different heights: if we look at this one... it has this height, and if we look at
this one, it has this other height, which is the height of the container. But they are both
vertically aligned with respect to the center.

If we look at this other one, it is also a container with two elements, this time arranged around
the column direction. First one, the text, and then the other, the button. And they are also
center aligned with respect to the edges of the other direction. Just as these two, whose
direction is row, are centered with respect to the vertical direction.

Chechu achieves this by saying that the container has what in Figma is known as Auto Layout.
For us that is called Flex.

Basically, it means that the contained elements are going to be placed along one direction:
either horizontally, like this one, or vertically, like this other one.

This GeneXus wiki page explains the control. And at the end there is a link to this other page
that gives an example.

I will use this page to see it graphically and make it clearer.

It says here that these containers allow you to create flexible layouts, which allow you to place
items, align them and distribute the space between them in a container, of course, even (or
especially, I would say) when their size is unknown beforehand or is dynamic.

A series of properties are then displayed to configure the direction and layout of the controls.

This would be the case of one container in row direction, this one in row reverse, this one in
column direction, and this one in column reverse. In the example, each container has 3 items.

In this other example, we decide whether to allow wrapping if the size of the items, that is,
their width, added together, exceeds the limits of the container. So in this case we are allowing
the wrap, that is, to extend in a line below, given that the direction is row, of course. If the
direction were a column, it would extend into a second column.

This other property indicates how we want the content to be justified. For example, if we want
the items to be centered with respect to the direction, which in this case is row. This would be
precisely the case of our Information flex.

So we come here, and we are going to do... Flex Direction “Row”. For Flex Wrap we are going
to leave “No Wrap” at first. And “Center” justification (we see the options).

We'll set the alignment of the items with respect to the top and bottom to be centered as well.

And here it will be clear what we are saying with that.

On the other hand, if we allow the wrap, then with this property we determine how to adjust the
content with respect to the excess space.

Well, I didn't intend to tell you all the possibilities of the control, but simply to introduce it
because this control is widely used both on the web and in native applications, precisely
because of its flexibility.

In this case, for example, this control would be more useful than the Table control if we
wanted –when the screen width decreases if the two elements don't fit that width– to have
them displayed in two rows (i.e. with Wrap). The table doesn't allow this, it is much more
structured: it has rows and columns. And in fixed quantities.

Here we only have a row (if the direction is row, like this one) without columns, that is to say,
where the elements are placed one next to the other according to the available space. And if
they run out of space, if the Wrap property is turned on, then a second row is created and so
on until completing all the items.

When a control is inside a flex container, it takes properties, these here, precisely because of
that situation.

Of course, as with any other control, we can define design properties for the Flex control, all
those that we saw statically, or the more well-known ones of margin, padding, etc., through
classes.

For example, going back to Figma, when Chechu defined this container with Auto Layout, she
set this horizontal direction, and paddings appeared to define the four edges: top, right,
bottom, left. And it was also possible to define the Gap, which is the horizontal separation
between the elements, which she had set to 80px.

Look at the CSS code that appears when we ask for this...
Doesn't all this sound familiar? Display flex, flex-direction row, justify-content center, align-item
center. We statically set these properties at the level of our Flex control, and these two,
padding and gap, we could place them in a class that we will associate later to our Flex
control. Or we could also place them all within that class, because all that we can define at the
level of the control can also be defined at the level of a class properties, right?

Well, in the same way, we see that this other container also has Auto Layout, but in the other
direction, in the column direction.

Here we see the Padding and Gap properties.

And again, if we copy the CSS properties, here is the display, the direction: column this time,
align-items and the properties Padding and Gap.

So we could also define this table as Flex.

And set, of course, the column direction so that it is displayed in this way.

From Figma's CSS we also extracted this, that align-items is centered, which represents these
items in relation to the edges of the other direction, right?

And here we would have to select Center. Well, they are disappearing, this should not be
happening... I'm going to leave the default, we'll see it later.

The content justification does have to do with the same direction of the flex, doesn't it? In this
case it is column, so we would also have to say centered for our case, even if the CSS didn't
indicate it.

Since it doesn't have wrapping –we didn't set it to have Wrap– then this property comes into
play and controls whether the size of the container is going to be adjusted according to the
size of the children.

Well, we would have to work with these aspects in order to place our elements in the correct
way according to Chechu's design. At first it may seem simpler to use the flex containers
because we can copy Chechu's design criteria directly... with Auto Layout we can transfer it
almost automatically to GeneXus. But we have to be careful because this is a bit trickier...

...note all the properties that are appearing now within this group... in this case more appear
because there are also those related to the participation of this internal Flex within this other
Flex.

As I had shown you before, all these properties appeared here, such as size, width and height,
which had to do with this control's role within the parent Flex.

Well, because of these somewhat trickier issues I decided to start teaching you with Table and
not with Flex. Flex may seem a bit more challenging because of those properties that have to
be better understood. Sometimes it gets confusing; for example, if I'm talking about content
justification, what is its direction? If I have the alignment of the item... Then one starts to get
confused, but when we get the hang of it, it's quite simple. And well, it actually has to be used
carefully.

When to use Flex? When I'm implementing a design where the elements that will be for
example along a row (if that is the direction) are not so structurally fixed in columns, and
certainly, of course, when we want the wrap functionality.

In this case, we didn't need it at first because as we said when the screen width doesn't fit
both elements another different design will be made, which we haven't seen yet because I
asked Chechu to design them in another file, so as not to get confused now.

OK, I'll stop here as it has been introduced, which is what I wanted, and later on we'll see if we
need to use a Flex container instead of a Table. By later on I mean when we continue
developing the screens of our application.

A grid can also be flex. I mention this now and I will mention it again when we implement one
of the grids in the future.

I will end this video now because I want to move on to the next module but you can, if
you want, try what I didn't try. For example, assign classes to the Flex with the
corresponding properties, and pay attention to the sizes given to the controls, explore
a little and try to make the application with the stencil with Flex look the same as it
did in the other way, as we had it done. That's the challenge I leave for you.

See you in the next module.

23

