
Database Update with Procedure-specific Commands

How to Update Data

Uniqueness
check

New command

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

New

AttractionId = 3
AttractionName
CountryId = 2
CityId = 1
CategoryId = 3

When duplicate

endnew

for each Attraction
CategoryId = 3

endfor

3

Previously: New Command

In the video where we studied the New command to insert a record in a
table through a procedure, we saw that if the record we wanted to
insert was duplicated by primary key or candidate key, then we could
choose to modify it, writing a For each within the When duplicate
clause.

But what if we already know that the record exists and we precisely
want to update it?
In the example, changing the category of tourist attraction 3, Eiffel
Tower, which we know exists.

2

Update

Is there a special Update command in procedures?

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionName

CategoryId = 3

endfor

3

For each Command

Insert, Update, Delete

The answer is NO. The well-known For each command is used to update
data. By this we are saying that the For each is not only used to query
the database, but also to update it.

In the example, if we want to change the category of the record
corresponding to the Eiffel Tower, then it will be enough to write this
For each. We are running through the Attraction table, filtering by
AttractionName and for the record found, directly
assigning a value to the attribute we want to modify. Of course, we
could modify the value of almost every attribute in the record. And not
only for it, but also for all related records in the extended table. Here,
many records can be updated in a single operation, unlike what
happened with the New command.

4

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionName

CategoryId = 3
CountryName Francia

endfor

3

For each Command

CountryId CountryName

1 Brazil

2 France

3 China

Francia

Insert, Update, Delete

For example, we could modify the name of the country (writing it in
Spanish we see that in the table it is in English). Then the For each is
positioned in the AttractionName record modifies its
CategoryId attribute, and accesses the related country record, by the
extended table, and in it modifies its CountryName attribute, placing

in Spanish.

5

For each Command

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionName

CategoryId = 3
CountryName Francia

endfor

3

CountryId CountryName

1 Brazil

2 France

3 China

Francia

AttractionId
= 5

Insert, Update, Delete

The next question is whether all attributes of the extended table can
be updated or there are restrictions.

For example, can we update attributes of the primary key? Could we
change the attraction ID to 5? No, all the attributes of the record and
the related attributes by extended table can be updated except for
the primary key. The navigation list will indicate this error.

Therefore, if we need to change the primary key of a record, we will
have no choice but to create a new record with the new key and
delete the old one.

6

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

Insert, Update, Delete

For each Command

For each Attraction
Where AttractionName

AttractionId = 5
CategoryId = 3

endfor

For each Attraction
Where AttractionName

new
AttractionId = 5
CategoryId = 3

endnew

Delete

endfor

5 Eiffel Tower 2 1 3

So, for example, if we want to change the ID of the attraction named
to 5 and the category to 3, we execute a New command,

which we want to have the same base table, Attraction. There we specify
the new primary key value, and for the rest of the attributes, we want it to
take on the same values as the For each record we are in, except for
CategoryId, because we wanted to take the opportunity and change it to
3.
Then, what we will do is to execute the Delete command, which deletes
the record in which we were positioned in the For each, that is to say, in
our case the one with ID 3.

7

Uniqueness
check

Referential Integrity check Rule/Event Execution

Assignment in For each

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionId = 3

AttractionName

endfor

For each Attraction
Where AttractionId = 3

AttractionName

When duplicate

endfor

Unique Index

As we saw in the case of the New command, the update through For
each will perform record uniqueness checks. In this case, it will only
apply when there are candidate keys; that is, when there is a unique
index defined over some attribute. Suppose this is the case of
AttractionName. And that we want to modify in the For each the name
of attraction 3, so that it becomes Museum.
Before attempting this update, the For each will check, using the
unique index, that a record with that value does not already exist.
Since in this case it does exist, then it will do nothing. The same thing
that happened with the New command.

But also, as in the New command, it will do nothing unless... we have
programmed a When duplicate clause. In this case, its contents will be
executed. We'll go back to this later.

8

Uniqueness
check

Referential Integrity check Rule/Event Execution

Assignment in For each

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionName

CategoryId = 3

endfor

3

Category Table
Excepti

on

On the other hand, as we saw with the case of the New command, the
update through For each will not perform referential integrity checks,
so if category 3 does not exist in the Category table, the program will
not check it. Again, if the database has referential integrity declared, it
will check it, so it will throw an exception and the program will cancel.

Let's see it in practice.

9

We have the four attractions, and the third one is the Eiffel Tower, which
is category 2.
And if we look at the category data we have only 2 categories: 1 and 2.

Now see it in GeneXus. We have this web panel, in which we have
programmed, in the event associated with the button, the invocation to
the procedure UpdateAttraction, in which we have this For each which
tries to change the category of the Eiffel Tower to 1, which we know that
exists.

10

Now let's see what happens if instead of assigning category 1, which we
know exists, we assign category 3, which does not exist. try it.

The program crashed because the For each did not perform an integrity
check, and tried to perform the update, but the database did perform
the check. So this exception was thrown and was not caught by our
procedure so as to do something about it. This can be done and will be
discussed in another video.

11

Uniqueness
check

Referential Integrity check Rule/Event Execution

Assignment in For each

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 2 1 2

4 Forbidden City 3 1 2

For each Attraction
Where AttractionId = 3

endfor

Of course, just as we said for the case of the New command, the update
by assignment within the For each of a procedure will not execute
absolutely any transaction rule or event either. Unlike what happens when
updating through a Business Component.

12

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 3

5 Christ the Redeemer 1 2 2

For each Command

New

CategoryName Tourist

endnew

For each Attraction

Where CountryName CityName

Where CategoryName Monument

CategoryId = find(CategoryId, CategoryName Tourist
)

endfor
COMMIT?

CategoryId CategoryName

1 Museum

2 Monument

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist site

COMMIT

Here is an example where we insert a new category, Tourist Site, in the
Category table, and immediately run through with a For each the tourist
attractions of the country China and city Beijing, of category

changing that category for the new one, Site.

Again, this code is only valid in the Source of a procedure. And what
happens with the Commit? When are the record inserted in Category
and the two records modified in Attraction committed?

If we don't write a Commit command explicitly in the Source, and if we
don't modify the default value of the Commit on Exit property of the
procedure, then GeneXus will add a Commit at the end. This is because
it will have already figured out that you are trying to update the
database from the Source. In a procedure where GeneXus doesn't find
that the database is to be updated, it doesn't add it, even if the Commit
on Exit property is set to Yes.

13

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 3

5 Christ the Redeemer 1 2 2

For each Command

New

CategoryName Tourist

Endnew

Commit

For each Attraction

Where CountryName CityName

Where CategoryName Monument

CategoryId = find(CategoryId, CategoryName Tourist

Endfor

Commit

CategoryId CategoryName

1 Museum

2 Monument

CategoryId CategoryName

1 Museum

2 Monument

3 Tourist site

Of course, if we wanted a Commit to be made after inserting the
category, and then after modifying the attractions, it would be enough to
make it explicit.

14

We have added a CityTour transaction to represent the city tours
offered to the public. Each city tour will cover a set of tourist
attractions, and will have a given price.
We have applied the Work With pattern and added an action that will
call a web panel that we have created to ask the user for a
percentage, and call a procedure that will increase the price of all the
city tours based on that percentage.

To this end, we run through the CityTour table, and assign to the
CityTourPrice attribute as a new value the value it had for this factor
here, which is the one that applies the increase. We could also have
used the operator directly to avoid repeating the attribute.

Note that the navigation list informs us which attribute is being
updated in the CityTour table.

If we now run it... we see that we have two city tours entered: one
with a value of 300, and another one with a value of 200; what we are
going to do is run that web panel, and we are going to tell it that we
want it to increase by 10%... And now we see how it has indeed done
so.

15

For each BaseTransaction

skip expression1 count expression2

order att11, att12 att1n [when condition]

order att21, att22 att2n [when condition | otherwise]

using DataSelector(parm1, parmn)

unique att1 attn

where condition [when condition]

where condition [when condition]

where att in DataSelector(parm1 parmn)

Attribute1 = expression1

Attribute2 = expression2

AttributeN = expressionN

When duplicate

When none

endfor

Summary

Uniqueness
check

Referential
Integrity check

Assignment

COMMIT

blocking NumericExpression

In short, to update records specifically by procedure we have the
For each command.

In its body, in addition to being able to do other things, both
attributes of the base table and the extended table can be
updated. The only restriction is that the primary key of the For
each base table cannot be updated.

On the other hand, we had seen that the only programmatic
control performed is the uniqueness control. In the case of the
For each, it will be checked that no candidate key is repeated. If
the For each finds that performing the assignment will repeat that
key, then it does nothing, unless the When duplicate clause is
programmed.
In the code of this clause a New command can be programmed
to insert a new record, for example.

We know that the For each doesn't make a referential integrity
check, so it will try to perform the update that has been specified
without taking into account whether the referenced record exists
or not. This is for performance reasons. But databases in general
do perform the check, unless we turn off that feature; so, if we
don't turn it off, and integrity fails, they will throw an exception.

Finally: for the record to be committed in the database we must
make sure that the Commit command is executed. In a

16

procedure, by default, an implicit Commit is placed at the end (as long as it is understood
that the Source is accessing the database somewhere to update it). But we can explicitly
write Commits in the Source, where it is convenient for us.

We will not see it here, but optionally you can specify a Blocking clause, which allows you
to make updates in blocks, instead of record by record. That is, it will process records in
blocks of N records to reduce the number of accesses and improve performance.

Finally, something we haven't said so far is that redundancies are not automatically
maintained when updates are made using procedures. It is the developer's responsibility
to do so. This means that if a redundancy depends on an attribute that is being updated,
GeneXus will not look for or calculate the new value to store in the redundant attribute.
The developer has to do it.

More information about all this can be found in our wiki.

training.genexus.com
wiki.genexus.com

