
………..……………………………………………………

Database update

Update with Business Component. Examples

In the previous video...

1

………..……………………………………………………

&BC

Attribute1 Value1

Attribute2 Value2

… ……

AttributeN NewValueN

2ndLevelName

Attribute21 Value21_4

Attribute22 Value22_4

… …

Attribute2M Value2M_4

Attribute21 Value21_2

Attribute22 NewValue22_2

… …

Attribute2M Value2M_2

Attribute21 Value21_3

Attribute22 Value22_3

… …

Attribute2M Value2M_3

&BC.Update()

&BC.Mode()

TrnMode.Update

TrnMode.Insert

...we analyzed at a theoretical level two cases that required a different approach
when executing the Update method on a business component variable: in one
case the variable was in Update mode and in the other the variable was in Insert
mode.

We will see examples of each.

2

………..……………………………………………………

Here is a two-level transaction of office visits, with a key composed of the date of
the visit, the physician, and the shift; and as secondary data the office, in addition
to the last visit number given to a patient of the second level. Here is a
representation, then, of the patients who will be seen in that visit. In addition to
their identifier, as a secondary attribute we will have a number indicating the
order in which the patient will be seen by the doctor, and whether the visit will be
made via videoconference or face-to-face.

This transaction has a set of rules declared to govern its behavior and has the
Business Component property set.

3

………..……………………………………………………

Here, at runtime, there is a single visit, in office 1, with these three patients.

We will want to change the office to 4; add a patient 4; change the visit of patient
3 to “by video;” and set the same value to the new patient, 4; in addition, we will
want to delete patient 6.

We will not do anything to patient 1.

4

………..……………………………………………………

BC Mode = TrnMode.UPDATE

Here is a Web Panel where we ask the user for the identifier of the office visit, and
here is the new office, and then:

• In this variable, the patient to be added;
• Here the one to be modified;
• Here the new value for “by video” for that patient, which will be the same as

for the new one;
• Finally, here will be the patient to be deleted.

Below we will see the collection of messages obtained when trying to update via
the BC.

Let's implement a way to achieve this, the first one we analyzed in the previous
video.

5

………..……………………………………………………

&officeVisit is a BC variable of OfficeVisit, precisely. We want to load it from the
database, with the values of the primary key, to then:
• Update this property/attribute of the header.
• Insert a new line (through a BC variable of the BC data type of the lines. And we

add it to the patient collection).
• Then we want to update another line, so we access it via GetByKey method and

there we update the property/attribute we are interested in.
• We also want to delete a line, for which we use the RemoveByKey method of

the collection, knowing that this deletion will be logical, and will only leave the
item marked for deletion.

Therefore, if at this moment we ask to see the internal content of the &officeVisit
variable in this way... (and now we will try it), the JSON should list this:
• This line marked with INS,
• This one with UPD, and
• This last one with DLT.
• What about the others contained in the BC? They might not be marked at all

but, as we said, they will be in Update mode by default.

Let's try this for our example...

6

………..……………………………………………………

For this visit, we want to change the office to 4, add patient 4, modify “by video”
of patient 3, and delete patient 6. Patient 1 should remain as it is.

So, here we enter the values of the primary key; the new office: 4; the new
patient: 4; also, we want to change “by video” of patient 3 and delete patient 6.
Ok.

Here we are looking at the JSON. Let's copy it to an editor to view its structure
better.

7

………..……………………………………………………

Here we can see the information of the header, and that OfficeId has already been
changed to 4.

8

………..……………………………………………………

And if we look down to see the rest of the header info, we see the Update mode
and the inferred attributes, for example. Now let's look at the lines.

9

………..……………………………………………………

The first line is that of patient 1, which was not changed. We see, for example, that
“by video” is set to true. Anyway, we see that the mode is set to Update. As we
said, it is updated anyway with the same information it already had.

10

………..……………………………………………………

Then we see patient 3, which is the one we wanted to change; it is in Update
mode and with the new “ByVideo” value—True. Here we see the one that is now
in the database before we actually run the Update.

11

………..……………………………………………………

Then we see patient 6, which is marked for deletion.

Finally, number 4, which is marked as new. It has the “by video” property set to
True, as we indicated. This false value is due to a Default rule in the transaction, to
enter all new patients with this value.

This BC is like this in memory; we still haven't given the order to reflect these
operations on the database.

12

………..……………………………………………………

To do so, we run the Update and if it is successful we commit. Then we ask again
to see how the BC variable is now loaded, and also ask to display the messages in
the message collection.

13

………..……………………………………………………

We enter the same values... and see that the update was successful; now let's
analyze the two JSONs: the ones before and after the Update.

14

………..……………………………………………………

Here is the previous one, which we have already analyzed.

And here is the one after the Update, where the office has effectively been
changed.

15

………..……………………………………………………

Patient 1 is exactly the same as it was...

16

………..……………………………………………………

Patient 3, which we updated by setting it to true... and now we see that the value
in the database of course matches the value in memory.

17

………..……………………………………………………

Patient 4, which is new, is no longer labeled as Insert but as Update, which is the
default value... also with “by video” set to true.

Patient 6 is no longer in the collection, it has been deleted.

18

………..……………………………………………………

Now if we check this in the transaction: we refresh...

We will have to see a 4 here...
And indeed:
• Patient 1 is as it was,
• 3 is now marked as “by video,”
• 4 has been added with a 0 for the number to be seen by the doctor, and
• 6 has been deleted.

19

………..……………………………………………………

Now, let's try to achieve the same result, but without loading the variable from the
database; instead, we want to use the variable in Insert mode.

If we then replace the Load by assigning directly to the primary key properties of
its value... the &OfficeVisit variable will be in Insert mode, and before doing
anything, empty. At this point, it will only have a value for the primary key. Here
we add a value to this property, and LastNumber will be empty.

Then, we add a line as in the other case, adding the item to the collection.

20

………..……………………………………………………

However, for the line we want to update we should not run any GetByKey because
we do not have the &officeVisit variable loaded in the database. Here what we
must do is add an item to the collection, but we must be careful to request new
memory space, specify for its identifier a value that we know exists, and only
assign a value to the property we want to change, which is this one. And then add
the item.

Note that we only assign a value to the attribute that we want to change. We
don't change the property corresponding to this other one because we want it to
keep the value that it has in the database.

21

………..……………………………………………………

Well, what about the line we want to delete? We can't do it with the variable in
Insert mode, because even if we insert the item in the collection and indicate that
we want to delete it, this deletion will not be logical but physical. Indeed, this
RemoveByKey will remove the item as if we had never inserted it.

Let's see it in the JSON. We comment this and execute.

22

………..……………………………………………………

I left the visit as it was before, with office 1, patient 1 “by video,” patient 3 with
false there and patient 6....

Let's run with the same changes as before, and analyze the JSON.

First, we can see that the header is in Insert mode, as we expected...

23

………..……………………………………………………

...and only the properties corresponding to the primary key and the OfficeId
property to which we gave the new value are loaded with non-empty values.

Then we see that only 2 lines are loaded in the business component:

• The one corresponding to the line to be inserted, which is in INS mode,
number 4, with its values.

• And the line that we ask to modify, which is 3, is also in INS mode because the
header variable in INS mode cannot distinguish modes for the lines. This will
be processed later, when the Update method is executed. Only then will all
the information from the database be loaded into an auxiliary variable and we
will see if there is a record/item for this patient in order not to try to insert
but to update. What? Only the properties that have been changed, which in
this case will have been only this one.

It is absolutely clear that there is no news about the patient 6 we wanted to
delete.

24

………..……………………………………………………

That’s because we cannot make the deletion when the variable is in Insert mode;
therefore, let's delete all this, and leave this part for later...

Let's delete this message we no longer need.

Now we try to Update, which, if successful, will perform the operations we have
seen. In that case, we commit.

Here, before making the commit is when we have to delete the patient that we
wanted to delete. This would be fine but, as we warned in the previous video,
there is a bug in GeneXus 17. As a result, when this OfficeVisit variable is in Insert
mode, after the Update it is not loaded with the values that it should, the current
ones in the database. As a workaround, we will make an explicit load.

In short, here we made the update, after which this new line will have been
inserted in the database and this one will have been updated, because this patient
exists. Then we load from the database the variable with all that done, delete the
patient that we wanted, and perform an Update again on the variable so that it
executes this deletion in a physical way. If it is successful, we can then commit it.

We are going to remove the comments from this and execute.

25

………..……………………………………………………

Here we have the visit as we had it before, and now we are going to ask for all the
updates and see that the visit was updated successfully; if we refresh...

26

………..……………………………………………………

...we see that indeed it did what we wanted, including the deletion of the line
corresponding to patient 6.

27

………..……………………………………………………

Of course, we could have achieved exactly the same if instead of manually loading
the &officeVisit variable in this way, we had done it with a Data Provider, which
returns an instance of OfficeVisit, and loads in a simpler way the part of the header
we are interested in and the two lines: the one we want to insert and the one we
want to update.

28

………..……………………………………………………

As we said in the previous video, the Data Provider will always return its result in
Insert mode. So &officeVisit will be here, inevitably in that mode. Let's test it again
to confirm that we get exactly the same result.

29

………..……………………………………………………

Then again we leave the visit as it was before...with office 1 and these lines....

We indicate the updates we want and run again... Success.

30

………..……………………………………………………

&BC

Attribute1 Value1

Attribute2 Value2

… ……

AttributeN NewValueN

2ndLevelName

Attribute21 Value21_4

Attribute22 Value22_4

… …

Attribute2M Value2M_4

Attribute21 Value21_2

Attribute22 NewValue22_2

… …

Attribute2M Value2M_2

Attribute21 Value21_3

Attribute22 Value22_3

… …

Attribute2M Value2M_3

&BC.Update()

&BC.Mode()

TrnMode.Update

TrnMode.Insert

Here we showed examples of everything we saw at a theoretical level in the
previous video: how the update works when the variable is in Update mode and
how it works when it is in Insert mode.

31

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

32

