Database update

Update with Business component. Behind the scenes

GeneXus




Transaction &BC
Attributel Valuel
Attributel* Attribute2 Value2
Attribute2 &BC.Update()
AttributeN ValueN
AttributeN 2ndLevelName —————» | Attribute21 Value21_1
Attribute22 Value22_1
2ndLevelName
{ Attribute2M Value2m_1
Attribute21*
Attribute22 l &BC.Mode()
. Atiribute21 Value21_2
Attribute2M Attribute22 Value22_2
} .
Attribute2M Value2M_2
| TrnMode.Update
Attribute21 Value21_i
Attribute22 Value22_i
Attribute2M Value2M

Let's suppose that we have a two-level transaction with the Business Component
property turned on, and a variable of that data type.

We had previously seen that what will be done internally when the Update
method is executed depends on the variable's mode.

If the variable were in Update mode, its header would be updated regardless of
whether any of its properties— elements, that is, attributes—had been modified;
if something had been done on the line collection, this would be reflected in the
database records. We will go into a bit more detail here.



&BC  (TmMode.Update) IR T I T

UPD
Attributel Valuel
Attribute2 Value2
" Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName —_—
Attribute2M Value2M_1
Attribute21 Value21_2
Attribute22 Value22_2
Atrbute2M Valueav 2 I e I T
l UPD
Attribute21 Value21_i
Attribute22 Value22 DLT
Attribute2M Value2M_i INS
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2M_2

How does it really work in the background? Does it go to the database looking for
differences between the existing records and the data contained in the BC at the
time of the Update?



&BC  (TmMode.Update) IR T I T

Attributel Valuel
Attribute2 Value2 UPD
AttributeN ValueN Attribute21 Value21_1
ttributef aluel
Attribute22 Value22_1 upPD
2ndLevelName —_—
Attribute2M Value2M_1
Attribute21 Value21_2
Attribute22 Value22_2 DLT

Attribute21 Value21_i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2m_2

Or is everything that was performed on the BC kept in memory so that these
operations are now passed on to the database, without checking exactly the
consistency between memory and database?



&BC  (TmMode.Update) IR T T
Attributel Valuel
Attribute2 Value2
Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName —_—
Attribute2M Value2M_1
T T N T
Attribute21 Value21_i
Attribute22 Value22
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2m_2

If the answer were the first one, the record in the header table would have to be
accessed and all the fields compared, to check if any of them changed and thus
update the particular field or fields that have changed in the record. Or directly
overwrite the record so as to skip the comparison.

And then access all the records corresponding to the rows, and if any of them are
not in the BC collection, delete them from the database. And then run through the
collection and for each item check if the record exists, and if so check if anything
has changed so as to modify it or overwrite it directly. If nothing has changed in
this one, we could leave it as it is. And we would be left with this item that doesn't
have a record in the database, so it is inserted.

Doing this whole comparison would be very burdensome. It will not be done.



&BC  (TrmMode.Insert) R T I AT
Attributel
Attribute2
AttributeN
2ndLevelName
&BC.Load(...)
&BC.Insert() I T I T

&BC.Update()
&BC.Save()

&BC.InsertOrUpdate()

(TrnMode.Update)

What GeneXus actually does is the latter. At the beginning of the execution of the
object where every BC variable is found, it starts in Insert mode because when it is
declared, empty memory space is already reserved for it.

For a BC variable to be in Update mode, it must have been loaded from the
database, either with Load, or with a previous (successful) Insert, Update, Save, or
InsertOrUpdate operation. Only then it is in Update mode.



&BC  (TmMode.Update) IR T I T

Attributel Valuel
Attribute2 Value2 UPD
AttrbuteN R Attribute21 Value21_1
ttributel alue
Attribute22 Value22_1 UPD
2ndLevelName —_—
Attribute2M Value2M_1
Attrihute21 Value21_2
Attribute22 Value22_2 DLT

Attribute21 Value21_i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2m_2

Therefore, since the last operation that left the variable loaded, when handling it
by code, it will record in its hidden information what is being done with the header
and the items: whether to update them, mark them for deletion, or insert them,
so as to execute these operations later.



&BC (TrnMode.Update)

Attributel Valuel
Attribute2 Value2
" Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName —>
Attribute2M Value2M_1
Attribute21 Value21_2
Attribute22 Value22_2
Atrbute2M Valueam 2 I e I T

Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2m_2

Let's slow down. Suppose that a Load of the &BC variable was made, leaving it in
Update mode and with this information (which matches that of the database).



&BC  (TrMode Update) IR T N T
Attributel Valuel
Attribute2 Value2 UPD
AttrbuteN N N Attribute21 Value21_1
ttributel alue
Attribute22 Value22_1 UPD
2ndLevelName s e
Attribute2M Value2M_1
Attribute21 Value21_2
&BC.2ndLevelName.Remove(2) Attribute22 Value22 2 DLT
&BC.2ndLevelName.RemoveByKey(Value21_2) -
Atribute2M Valueav 2 T A I P
Attribute21 Value21 i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2v_2

Next, we manipulate the variable by code and do, for example, the following:

* Change this header value,

¢ This one of this item,

* Delete this other item (either with the Remove method of the collection, asking
to delete the second item, or the RemoveByKey, to which we must pass the
identifier). When doing this the item will not be actually deleted from the
collection, but marked to be deleted, so it will still be there (that is to say, it will
be a logical deletion,

¢ Add this other one, and

* Leave the last one as it was.

Then the elements of the BC are marked in this way: header and first item to be
updated; second item marked to be deleted; third item marked to be inserted; and
the last one wouldn't need to have any mark because nothing was done with it.
We'll return to this later.



8BC _ (TmMode Update) IR T N T
Attributel Valuel
Attribute2 Value2 UPD
AttrbuteN N N Attribute21 Value21_1
ttributef alue
Attribute22 Value22_1 UPD
2ndLevelName —>
Attribute2M Value2M_1 &BCUpdate()
i &BC.Save()
Attribute21 Value21_2
Attribute22 Value22_2 DLT
Atrbute2M Valueav 2 I e I T
Attribute21 Value21_i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2M_2

We give the order to Update (or Save, which in this case is the same because the
variable is in Update mode).

It will try to overwrite the header, regardless if anything has changed in it (for
which, clearly, it must first check that there is a record in the table with that
primary key; otherwise, we already know that it will fail by PrimaryKeyNotFound).
This is the same thing that the transaction does when you click on Confirm in
Update mode. It will update the header in the database even if the user has not
modified any of its fields.

And then, for each item in the collection:

* Ifitis marked as update, the entire record is overwritten,

¢ [fitis marked as deleted, the record is searched for and deleted from the table,

¢ [fitis marked as new in the collection, it is inserted into the table,

* And if nothing was done with it... well, here there is a difference with the
transaction: it is still overwritten. It is as if it remained in Update mode.

10



&BC (TmMode Update) I T I T
Attributel valuel
Attribute2 Value2 UPD
- Attribute21 Value21.1

AttributeN ValueN UPD
Attribute22 Value22 1

2ndLevelName —_—T
Attribute2M Value2M_1 &BC.U pd ate()

| &BC.Save()

Atiribute21 Value21 2
Attribute22 Value22 2 DLT

Attribute21 Value21 i

Attribute22

INS

Attribute2M Value2M_i

-

error( "...") if Attribute22 = Value22_2 and Update;

Attribute21

Attribute22

Attribute2m

A word of caution: at the time this video was recorded, it was being reviewed
whether to change this behavior so that the business component works in the
same way as the transaction. In the transaction, if a line is in Update mode and
nothing is done to it, that line is not processed at all. Therefore, not even rules are
evaluated for it. However, for the BC, since the line is processed, because it is
updated anyway, its rules will be evaluated and triggered. It is important to be
aware of this.

11



&BC (TrnMode.Update)

Attributel Valuel
Attribute2 Value2
" Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName —>
Attribute2M Value2M_1
Attribute21 Value21_2
Attribute22 Value22_2
Atrbute2M Valueam 2 I e I T

Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2m_2

Let's resume our work. Of course, this solution is based on the premise that the
contents of the BC when it was loaded...

12



8BC  (TmMode.Update IR T R T
Attributel Valuel
Attribute2 Value2 UPD
AttrbuteN R Attribute21 Value21_1
ributel alue
Attribute22 Value22_1 UPD
2ndLevelName —_—t
Attribute2M Value2M_1 &BCUpdate()
i &BC.Save()
Attribute21 Value21_2
Attribute22 Value22_2 DLT
Atribute2M Valueav 2 T A I P
Attribute21 Value21 i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22_2
&BC.GetMessages()
Attribute2M Value2m_2

...before making the changes by code, match the database state immediately
before the Update or Save operation was executed. Keep this in mind, because if
someone changed the state of the database for these records in the meantime,
the result will depend on those changes, so it is a good idea to review the
messages generated after the Update or Save.

13



&BC.Load(Value1) I o P

Attributel Valuel
Attribute2 Value2
" Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName —>
Attribute2M Value2M_1
Attribute21 Value21_2
Attribute22 Value22_2
Atrbute2M Valueam 2 I e I T

Attribute21 Value21_2
Attribute22 Value22 2
Attribute2M Value2m_2

And what would happen if, for example, we loaded the &BC variable from the
database first?

14



&BC.Load (value1) IR e T
Attributel Valuel
Attribute2 Value2 UPD
AttrbuteN N N Attribute21 Value21_1
ttributel alue
Attribute22 Value22_1 UPD
2ndLevelName —>
Attribute2M Value2M_1
&BC Update() Attribute21 Value21_2
Attribute22 Value22 2 DLT
&BC_2 = &BC : . -
&BC_2.Update() i
Attribute21 Value21_i
Attribute22 Value22
INS
Attribute2M Value2M_i
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2v_2

... And we handled it as we did here, and instead of doing an Update or Save, we
assigned it to another BC variable, for example, to one to which we had applied a
new before the assignment? And then we applied the Update to this new variable.

We could believe that here things become more complex, because the &BC_2
variable will be in Insert mode and not Update, because of the new. And we could
also be led to believe that the recording of the operations performed on the items
will have been lost. But none of this will be true.

Although the &BC_2 variable was left in Insert mode after this assignment, this
other one will do away with that. In fact, it will no longer point to the new memory
space, but will point to that of the &BC variable. The assignment does not make a
copy of what has been assigned, but points to exactly the same place, as a pointer.
For this reason, it will assume both the mode of the &BC variable and the
recording of operations. And when the Update request arrives, it will be the same
as having done the Update of the &BC variable.

If the mode of &BC_2 at this point is Insert, in this other one it will be the mode of
&BC, which in our example was Update.

15



Attributel Valuel
Attribute2 Value2
il 21 [
O &BC_2 = DP(parm,, ..., parmy) AttributeN ValueN Attribute Value21_1
Attribute22 Value22_1
2ndLevelName —_—
Attribute2M Value2M_1
Msg( &BC_2.Mode() ) —— > TrnMode.Insert ~ «———— &BC_ output = new() l
Attribute21 Value21_2
Attribute22 Value22_2
O &BC_Z. Update() Z &BC_Z .Save() Attribute2M Value2M_2
Attribute21 Value21_i
Attribute22 Value22_i
Attribute2M Value2M
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2M_2

Why doesn't it work like this when we assign the result of a Data Provider to a BC
variable?

If we ask here for the mode of the &BC_2 variable, we will be surprised to find that
it is Insert. This is because the first thing that the Data Provider does internally is a
new, so the variable that will be returned will be, inevitably, in Insert mode.

Therefore, this case is equivalent to the one that we haven't analyzed here yet but
in the videos of the Advanced course: what happens when the variable is in Insert
mode and an Update operation is requested. Here it is not the same if the
operation requested is the Update operation and not the Save operation.

16



O &BC = new() _ TrnMode.Insert O &BC
Attributel Valuel
Attribute2 Value2
Attribute21 Value21_1
AttributeN ValueN
Attribute22 Value22_1
2ndLevelName
Attribute2M Value2M_1
() sBCUpdate)  # &BCSave() |

Attribute22 Value22_2

Attribute2M Value2M_2

Attribute21 Value21_i

Attribute22 Value22_i

Attribute2M Value2M_|

Let's think about Save. Suppose we first request memory, so the variable is in
Insert mode; then we assign values to the header properties and add 3 lines, and
execute the Save. It will try to insert the BC into the database, which can only be
successful if the values indicated in the BC for the primary key do not correspond
to an existing record in the database table for the header. Remember that the
Save method will always try to do the operation that corresponds to the mode in
which the variable is in. In this case, if the record existed, the Save() would fail.

On the other hand, what will happen with the Update when the mode is Insert? In
this case, since the variable is in Insert mode, it can be assumed that it was not
loaded from the database. In other words, it is blind to the database record that
the developer is assuming exists (it is assumed to exist, clearly, because otherwise
an Update would not be explicitly requested).

In short, the developer loaded the variable with values that don't need to have
been extracted from the database. This means, logically, that the Load operation
was not performed, because in that case the variable would be in Update mode if
that Load had been successful.

So it can be assumed that for the primary key values were assigned that the
developer assumes correspond to an existing record, because if this is not the
case, the Update operation will fail.

How does the Update work here?

17



&BC Attribute1

Attribute2

AttributeN

2ndLevelName

Let's suppose that this is the variable on which we did a new or that we use for the
first time in the code, so it will be in Insert mode.

18



&BC Attribute1 Valuel &BC Aux Attribute1 Value1
R R S I N S
AttributeN NewValueN AttributeN ValueN
2ndLevelName 2ndLevelName |
Attribute21 Value21_1
Attribute22 Value22_1
Attribute2M Value2M_1
| Wy e e
Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2M_2
Attribute21 Value21_3
Attribute22 Value22_3
Attribute2M Value2M_3

&BC.Update()

Then we only assign a value to the property that corresponds to the primary key,
in order to identify the database record that will correspond to the header. And
we give a value to the property that we want to modify, the one that corresponds
to this attribute. All the other properties are left unchanged; that is to say, they
remain empty.

Then we handle the collection of lines—we will see what we can do—and execute
the Update method.

Internally, the method detects that the variable is in Insert mode, so it will create
an auxiliary variable on which it will apply a Load with the values of the primary
key of the developer's variable. Therefore, if the record exists, it will load in the
auxiliary variable exactly the same information from the database for that
identifier.

What does it do next? In the example where only one property of the header was
modified...

19



&BC Attribute1 Valuel &BC Aux Attribute1 Value1
R R S I N S
AttributeN NewValueN AttributeN NewValueN
2ndLevelName 2ndLevelName |

v

Attribute21 Value21_1
Attribute22 Value22_1
Attribute2M Value2M_1

Attribute21 Value21_2

Attribute22 Value22_2

Attribute2M Value2m_2

Attribute21 Value21_3

Attribute22 Value22_3

Attribute2M Value2M_3
&BC.Update() &BC_Aux.Save()

...it copies that value for the same property of the auxiliary variable, overwriting it.
And on the auxiliary BC variable it executes a Save, which is the same that we
analyzed at the beginning of the video, since the auxiliary variable is in Update
mode.

20



&BC Attributel Valuel &BC Aux Attributel Valuel
- Attributel AttributeN
e e T I e I T
AttributeN AttributeN
2ndLevelName 2ndLevelName | UPD
Attribute21
Attribute22
Attribute2M Value2M 1
| I T N W
Attribute21 Value21 2
Attribute22 Value22 2
Attribute2M Value2Mm 2
Attribute21 Value21 3
Attribute22
Attribute2M Value2M_3
Attribute21 Value21 4
Attribute22 Value22 4
&BC.Update() ribute alue2.
= : INS
Attribute2M Value2M 4

Now let's think about the lines and give the complete explanation.
Let's suppose that what we wanted, in addition to modifying this attribute, was to

add a new record to the second level table. To get this done on the auxiliary
variable that will have an impact on the Insert of this record in the database...

21



&BC Attribute1 Value1 &BC Aux Attribute1 Valuel
e po— o [ IR | == S W
AttributeN NewValueN AttributeN NewValueN
2ndLevelName | 2ndLevelName | upD
Attribute21 Value21_4 Attribute21 Value21_1
Attribute22 Value22_4 Attribute22 Value22_1
Attribute2M Value2m_4 Attribute2Mm Value2M_1

Attribute21 Value21_2
Attribute22 Value22_2
Attribute2M Value2m_2
Attribute21 Value21_3
Attribute22 Value22_3
Attribute2M Value2M_3
v
Attribute21 Value21_4
Attribute22 Value22_4
&BC.Update() -
INS
Attribute2M Value2M_4

...we add an item to the collection of our variable, and assign all its values to it.
What will happen in the background is that when this item is evaluated to
determine what to do with it on the auxiliary variable, the GetByKey method will
search on the line collection for one with this value. If it is not found, then it is
added.

22



&BC Attributel Value1 &BC Aux Attribute1 Value1
R o o I R I B
AttributeN NewValueN AttributeN NewValueN
2ndLevelName | 2ndLevelName | UPD
Attribute21 Value21_4 Attribute21 Value21_1
Attribute22 Value22_4 Attribute22 Value22_1
Attribute2M Value2M_4 Attribute2Mm Value2M_1
| | T T T
Attribute21 Value21_2 Attribute21 Value21_2
Attribute22 NewValue22_2 Attribute22 Value22_2
Attribute2M Attribute2M Value2M_2 UPD
Attribute21 Value21_3
Attribute22 Value22_3
Attribute2M Value2M_3
v
Attribute21 Value21_4
Attribute22 Value22_4
&BC.Update() -
INS
Attribute2M Value2M_4

Next let's suppose we want to update an existing record— for example, this
value—so we add another item but where we only assign a value to the identifier
and to the property corresponding to the attribute we want to modify. We only
indicate the new value. All other properties are left unchanged; that is, empty.

When analyzing what to do with this item on the auxiliary variable, a GetByKey is

run, and since an item is found, only what was changed —that is, this property—is
copied.

23



&BC Attributel Value1 &BC Aux Attribute1 Value1
R o o I R I B
AttributeN NewValueN AttributeN NewValueN
2ndLevelName | 2ndLevelName | UPD
Attribute21 Value21_4 Attribute21 Value21_1
Attribute22 Value22_4 Attribute22 Value22_1
Attribute2M Value2M_4 Attribute2M Value2M_1
| | T T T
Attribute21 Value21_2 Attribute21 Value21_2
Attribute22 NewValue22_2 Attribute22 NewValue22_2
Attribute2M Attribute2M Value2M_2 UPD
Attribute21 Value21_3 Attribute21 Value21_3
Attribute22 Attribute22 Value22_3
Attribute2M DLT Attribute2M Value2M_3 DLT
v
Attribute21 Value21_4
Attribute22 Value22_4
&BC.Update() -
INS
Attribute2m Value2V_4

Finally, let's suppose that we want to delete a record, so we could assume that it is
enough to add another item, only assigning a value to the property that identifies
it, and then execute a Remove or RemoveByKey of that item, so that it is marked
for deletion.

However, it will not work like that. If the BC variable is in Insert mode, when the
item is removed from the collection it is not marked for deletion, but is directly
deleted. This means that we cannot delete lines with BC variables in Insert mode.
They must be in Update mode to be able to do this, because only in that mode the
item is marked for deletion.

24



&BC Attributel Valuel &BC Aux Attributel Valuel
- Attributel AttributeN
e e T I e I T
AttributeN AttributeN
2ndLevelName | 2ndLevelName | UPD
Attribute21 Value21_4 Attribute21
Attribute22 Value22 4 Attribute22
Attribute2M Value2m 4 Attribute2M Value2M 1
] | I T N W
Attribute21 Value21 2 Attribute21 Value21 2
Attribute22 NewValue22 2 Attribute22 NewValue22 2
Attribute2M Attribute2M Value2M 2 UPD
Attribute21 Value21 3
Attribute22
Attribute2M Value2M_3
Attribute21 Value21 4
Attribute22 Value22 4
&BC.Update() bt e &BC_Aux.Save() &BC_Aux.Update()
- - INS
Attribute2M Value2M 4

In short, a variable is used in Insert mode only to modify and/or add lines, but not
to delete.

And what the developer does on this new variable is only indicate the values to be
modified from the header, and for each line to be modified, its identifier and value
or values to be modified; and for a new line, provide all its values.

This will have the consequences that we have just analyzed on the auxiliary

variable, on which the Save() will then be performed, which in this case does
match the Update.

25



&BC Aux Attributel Valuel
- T T T
Attribute? Value2
AttributeN
2ndLevelName | UPD
Attribute21
&BC _Aux.Load(Valuel)
Attribute22
Attribute2M Value2M 1
| I T N W
Attribute21 Value21 2
Attribute22 NewValue22 2
Attribute2M Value2M 2 UPD
Attribute21 Value21 3
Attribute22
- DLT
Attribute2M Value2M_3
Attribute21 Value21 4
&BC_Aux.Update()
- Attribute22 Value22 4
= : INS

Attribute2M Value2M 4

From what we have seen, if we want not only to modify data but also to delete
lines, it will be convenient to make an explicit Load so that the variable is loaded
from the database and there perform all the operations, including the deletion of
items.

26



&BC Attributel Valuel T .
ransaction
Attribute2 { &BC = DP( parms )

Attributel = Valuel
AttributeN = NewValueN

AttributeN NewValueN

2ndLevelName |

2ndLevelName

{

Attribute21

Attribute22

Attribute21 = Value21_ 4
Attribute2? = Value22_4

Attribute2M

Attribute2M = Value2M_4
}

Attribute21

Attribute22 2ndLevelName

= {
(RN DAY Attribute21 = Value2?1 2
Attribute22 = NewValue22 2

Attribute21 Value21 3 }

Attribute22

- 2ndLevelName
Attribute2M DLT {

}

Attibute21 = Value21_3

&BC.Updatel()

However, if we are going to use a Data Provider to load the &BC variable, since in
this case we know that it will inevitably be in Insert mode, how can we delete this
line?

27



&BC Attributel Valuel

Attribute2

Transaction
{ &BC = DP( parms )

Attributel = Valuel
AttributeN = NewValueN

AttributeN NewValueN

2ndLevelName |

2ndLevelName
Attribute21 Value21_4 {

Attribute21 = Value21_ 4
Attribute2? = Value22_4

Attribute22

Attribute2M Value2M 4

I Attribute2M = Value2M 4
}
Attribute21 Value21 2
Attribute22 NewVa an LeVeIName
= {
(RN DAY Attribute21 = Value2?1 2
Attribute22 = NewValue22 2
}

&BC.Updatel()

To achieve what we want, in this case we should not add the item to the variable,
clearly, but we should only make the changes related to modifications and new
items...

28



&BC Attributel Valuel

Transaction

Attribute2 Value { &BC = DP( parms )
= Attributel = Valuel
A‘:'b”telN AttributeN = NewValueN If &BC.Update()
2ndLevelName |
\ 2ndLevelName &BC.2ndLevelName.RemoveByKey(Value21_3)
Attribute21 Ve {
Attribute22 Attribute21 = Value21_4 If &BC.Update()
i Attribute22 = Value22_4
Attribute2M Value2M 4 c it
Attribute2M = Value2M_4 oL
Attribute21 s endif

Attribute22

2ndLevelName
= { endif
Arlbre2M MIEAH 2 Attribute21 = Value21_2
Attribute22 = NewValue22 2
}

Attribute21

ot
Attribute22

Attribute2M Value2M DLT

&BC.Update()

...execute the Update and then, if it is successful, since the variable will be in
Update mode, we can add the Remove or RemoveByKey because after the Update
we know that the variable will be loaded with all the information of the database,
including the line that we want to delete.

Then the RemoveByKey will mark it to be deleted in the next Update, which is
what we will have to execute for this action to be performed. Next, we will be able
to commit.

29



&BC Attributel Valuel

Transaction

Attribute2 Value2 { &BC = DP( parms )
Attributel = Valuel
CAIaER] Nt AttributeN = NewValueN If &BC.Update()
2ndLevelName |
' 2ndLevelName &BC.Load(....)
Attribute21 Value21 4 {
e T, Attribute?1 = Value21 4 &BC.2ndLevelName.RemoveByKey(Value21 3)
B Attribute22 = Value22 4
Attribute2M Value2m_4 If &BCUpdate()
l Attribute2M = Value2M_4
} .
Attribute21 Value21 2 Commit
Attribute22 Ng 2ndLevelName )
- { endif
Attribute2M Value2M 2 Attribute21 = Value21 2 _
Attribute22 = NewValue22 2 endif

Attribute21

Attribute22

Attribute2M Value2M'3 DLT

&BC.Updatel()

However, in GeneXus 17 there is a bug so if the &BC variable is in Insert mode
when the Update is made, even if it is successful, the content of the variable is not
updated. It is left in the database as is and therefore the line that we want to
delete is loaded. It will be solved in version 18, but for now as a workaround we
could make the load explicit.

This is the end of the in-depth theoretical analysis on how to update through the
Business Component.

In the following video, we will see all this with an example.

30



GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

31



