
Database Update

What happens when a foreign key accepts nulls?

Insert, Update, Delete

1. Update Through a Form

2. Update Through Code

There are two ways to update the database: interactively through the
transaction object, using its screen, or through code.

2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete()

2. Procedure: New, For Each, Delete

To update through code there were two options:

Using the business component of the transaction, through its methods,
or exclusively within a procedure, through the New, For Each commands
with direct assignment of the attributes to be modified, and the Delete
command.

3

Uniqueness
Controls

Referential Integrity
Controls

Rule/Event Execution

Business Component

Proc (new, for each, delete)

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

As we know, both options control the uniqueness of records, that is, no
records with a repeated primary or candidate key are ever allowed to be
left in the database. In the example, it will never be possible to have two
attractions with the same identifier. And if, for example, AttractionName
were a candidate key, no two attractions with the same name would be
allowed either.

a big difference between updating via a Business Component and
doing it via direct update commands in a procedure: only Business
Components will execute the logic coming from the rules and events of
the transaction, and only in this way will referential integrity be controlled
through a program. Why do we say a

4

If we have the Attraction transaction that records the tourist
attractions that always belong to a country and city and to some
category (like monument, museum, etc.), then clearly in the
associated table we will have foreign keys. In particular, the
CategoryId attribute will be a foreign key to the Category table.

The GeneXus developer will not have to program in the transaction
the referential integrity control for each foreign key because it will
already be automatically included in the generated program. part
of the logic.

5

So, when the user wants to assign an existing attraction to a non-
existent category, the transaction informs us that this is not
possible. It's making a referential integrity control, before the
database itself does it. 0

6

Let's suppose that we implemented a web panel that allows the user
to enter an attraction ID and a category ID, to change the category of
the attraction to this other one.

There are two options to do it through code: one is through the
Attraction Business Component, and the other will be through a
procedure.

7

Let's see how we would implement the first one.

With the Business Component property activated, we define a
variable of this type, and in the event associated with the button we
load it from the &AttractionId variable that the user enters through
the screen.

If it exists, that is, the Load does not fail, then we change the
category for the one entered by the user, and try to update it. This
will work just like the transaction, since the code associated with that
Update method will check for the existence of that category and only
then send the update order to the database. And since that code will
find that there is no such category, it will not try to update the
database; it will return False and the "else" will be executed.

try it at runtime.

8

On the other hand, if we want to do the same update through a
procedure, as we see here, we send the attraction and category
identifier to this procedure, and in it we search for the attraction and
the category is directly updated.

When we run it with a non-existent category ouch! A database
exception will occur and the user will have to deal with this unfriendly
screen. Here, the program is not performing the necessary referential
integrity controls. But the database is making them. This the reason
for this error.

We could capture the error to make something more friendly so that
the program doesn't cancel abruptly. To this end, the Error_handler
rule is used. As a parameter we must enter the name of a subroutine
that we must define in the object, and there we will program its
behavior in case of a database error, asking first for that error. You can
see details about this in our wiki.

9

We can also remove the referential integrity statements from the
database so that it doesn't make the controls. Although it is not
recommended, we have this property at the Data Store level in case we
need it.

10

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 102

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

If select CategoryId from
Category where CategoryId =102

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 null

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

By default, then, if we don't change that property, the referential
integrity may or may not be controlled programmatically, but it will
always be controlled by the database.

However, we had seen a case where a non-existent foreign key value
was allowed. It's just that strictly speaking, it wasn't a value.
That's when we allowed the foreign key to be null. How did we tell the
database that we would allow this for a foreign key?

In the transaction structure we had the Nullable column, which was

set to No by default, but could be changed to Yes.

11

This meant that when the transaction was executed, and the category
identifier was left empty, the program didn't make any referential
integrity controls, and neither did the database.

12

However, if we try to do the same thing, but through the Business
Component ouch! It's giving us basically the same database exception
as before, for reference integrity failure. going on?

Why was it possible to use the transaction but not its Business
Component?

13

empty

Numeric

CategoryId 0 null

Numeric

CategoryId

The empty value and the null value are two very different things.

The empty value is a value. Depending on the data type, it will be one of
the possible values of that type. Thus, if the type is numeric, the empty
value is zero. Databases have empty values specified according to each
data type. But, strictly speaking, the null value is not a value. In fact, a
NON-VALUE. Saying that CategoryId is Null is the same as saying that its
value is not specified and is not known. not the same as saying it is
empty.

14

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

empty

For AttractionId = 2 → CategoryId = 0

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 null

3 Eiffel Tower 2 1 2

4 Forbidden City 3 1 2

For AttractionId = 2 → CategoryId = null

Therefore, empty and null values are two very different things in
databases. If we are implementing a program and send the order to
change the category of attraction 2 to 0 in the database, what we will
get is none other than the screen with the database exception for
referential integrity failure. On the other hand, if we change it to null,
there will be no problem, just like when we did it through the
transaction.

So, the question is: Why is the transaction asking the database to
change the Null and instead the business component is sending the
empty value, zero?

15

In the properties of the foreign key attribute, CategoryId, we see one called
in that is set to as Null. This means that if the attribute

accepts nulls, as in this case, every time the value is left empty in the form, it
will be considered to be Null when sent to the database and not empty.

16

But this doesn't apply when the update is made through the
Business Component, which doesn't have a form.

Therefore, if the &CategoryId variable is empty, this element will
be left with an empty and not null value, and this is why the
referential integrity fails when trying to update. We have to
specify the null value if the variable is empty.

There are two ways to do so: Either we do it locally, only here, or
we do the same mapping that gets the attribute property, but this
time also valid in the Business Component, wherever it is used.

For the first thing, you only have to specify that if the CategoryId
variable is empty, the Business Component element will be set to
null. The SetNull method applies to attributes that accept null
values and their corresponding ones in the Business Component
variables, as in this case.

If we try it now, we see that we can do it.

The drawback of this alternative is that if we want to leave this
foreign key null through a Business Component variable anywhere
else, we will have to do the same.
As we were saying, the other, more general option is to
incorporate this SetNull as a rule in the transaction. Here we
remove it then...

17

And go to the transaction to specify that the attribute is set to null when
its value is left empty. This is already done by default when using the
transaction screen, thanks to this property; so, strictly speaking, we can
ask that this rule is only executed for the Business Component.

We can always indicate that a rule is only executed when it is in the Web
transaction, or when it is in the Business Component, by placing this
mark.
Actually, if we want to write a set of rules that only apply to the Web
transaction, or that only apply to the Business Component, we do it in
this way.

try it. We see that it is indeed another solution.

18

Finally, what about updating through the procedure? We have exactly
the same problem.

19

And we see that it works.

20

training.genexus.com
wiki.genexus.com

