
Unit tests

Introduction

Throughout the development of our application for the Travel Agency, we
have mentioned the importance of separately testing the new
functionalities we are developing, and then testing the entire application
to make sure it behaves as expected.

Automatic tests

Unit Tests

Services

UI Tests

More integration

More isolation

As the application grows, this type of task can become increasingly
burdensome, so GeneXus helps us by providing features to create and
run automatic tests, in order to reduce some of the manual verification
work.

2

Automatic tests

Unit Test

User Interface Test

GeneXus object:
UnitTest

GeneXus objects:
UI Test

Web UI Test

• Unit tests allow us to test a part of the application separately. In
GeneXus, unit tests without an interface are applied to tests on
procedures, Data Providers, and Business Components. In short, on
those components where the business logic of our application should
reside, and that's why the Unit Test object exists.

• The Interface test allows us to create tests simulating a actions on
the browser, in order to test entire application flows. For this purpose,
there are UITest objects for mobile interfaces, and Web UITest objects
for web interfaces.

When is it interesting to test a GeneXus procedure? (GeneXus logic)

Input parameters
Procedure

Output parameters
1

2

3

Output parameters

A mix of both.

Procedure

Unit tests associated with:
• Procedures
• Data Providers
• Business Components
• Rest services

So, when should a GeneXus procedure be tested?

• When given some input parameters, the output of the Procedure is

to be tested by comparing the expected results (using Assertions)

with the results of the process (either output variables, files, or

database records). To this end, assertions that is, affirmations or

statements included in the procedure are used.

• When there are no input parameters, but from parameters or

database settings the Procedure is expected to return some

expected results (for example, variables or database records).

• And when there is a mix of both scenarios.

This means that any GeneXus Procedure can be tested to verify that it

works according to the defined specifications. In addition to Procedures,

unit tests associated with Data Providers and Business Components can

also be defined.

Benefits

Detect errors in the code early.

Give immediate feedback to developers.

Are fast and are shared throughout the Knowledge Base if GeneXus Server is being used.

Developers can run their tests from the GeneXus IDE itself without the need for other tools.

The main benefits of performing unit tests are as follows:

• Detect errors in the code early.

• Give immediate feedback to developers.

• They are fast and shared throughout the Knowledge Base if

GeneXus Server is being used.

• Developers can run their tests from the GeneXus IDE itself with no

need for other tools.

Example: UpdateTripPrice

Procedure that updates the price of a trip according to a percentage received by parameter.

OK, let's see an example.

From the launchpad, we run Work with Trip, and see that we have

three trips registered with their current costs.

1100, 1800, and 2300

Example: UpdateTripPrice

We have created a procedure, named UpdateTripPrice, which

calculates the price increase of a given trip, according to a

percentage received by parameter. For the Travel Agency, the

final price of a trip cannot exceed 2500.

We see then that the procedure receives two input parameters:

The &TripId variable and the increase percentage.

Also, it has an output parameter that returns the value obtained

by the increase along with a comment that indicates whether the

update was performed or the maximum amount indicated was

exceeded.

Then, for the TripId received, the procedure calculates the value

according to the percentage that was also received; if that value

is greater than 2500, it does not update and returns the

corresponding message.

If the value is lower than or equal to 2500, it does update the

value of the TripPrice attribute and also returns the corresponding

message.

In case there is no trip with the TripId value received by

parameter, a message will be returned indicating that the trip is

not registered.

Creation of the associated Unit test

Object: UpdateTripPriceTestSDT

To test this procedure, we are going to create the

corresponding Unit test.

To do this, we right-click on the procedure tab and select

Create Unit Test.

Then GeneXus creates three objects, which can be seen

below the new Tests node in the KBExplorer window:

The UpdateTripPriceTestSDT object,

which defines the structure of a given test case for the object

we are testing.

Note that as we would do it defines both input variables

with the same name as the parameters of the procedure, and

defines an ExpectedUpdateResult variable where we will be

able to define the value of the expected result.

In short, we will be able to say, for example, that for the trip

TripId=11, with a current cost of 1100, if we indicate an

increase percentage of 10% we expect a result of 1210 with a

message indicating that the price was updated correctly.

We can also assign a message that we want to be displayed in

case the result is different from the one indicated.

Creation of the associated Unit test

Object: UpdateTripPriceTestData

Now let's move on to the UpdateTripPriceTestData object, also

created automatically by GeneXus.

This Data Provider is based on the SDT we saw earlier, and allows

us to define a data set. By default, 5 test cases are created, but

we can modify it.

We have three trips registered, so we are going to define three

tests with an increase percentage of 10%. In each case, we

indicate the expected value returned by the procedure.

But we also define a fourth test set for TripId= 8 which does not

currently exist in our database.

Creation of the associated Unit test

Object: UpdateTripPriceTest

Assert command to compare an expected result with an obtained result

• AssertStringEquals to compare texts
• AssertBoolEquals to compare boolean values
• AssertNumericEquals to compare numeric values

Lastly, the UpdateTripPriceTest object is the one that will run through

the collection of test cases, and for each one of them it will invoke our

procedure and validate whether the result obtained matches the

expected result.

This object is a GeneXus procedure and is programmed as such, so we

are going to see a very familiar notation.

That is, FOR EVERY test case in the collection of Tests that we define in

the data Provider, a call is made to the procedure we are testing with

the input parameters defined in the test case and a variable as output

value.

What is new in the unit test is the ASSERT command. It basically

compares an expected result defined as part of the test case against

the result obtained.

If the expected result and the result obtained are the same, the test is

successful and is said to PASS, and if there is any difference, the test

FAILS and an error is reported showing an associated message.

Here we are using the AssertStringEquals function to validate the result

since the result is a text, but it is also possible to use AssertBoolEquals

to compare Booleans or AssertNumericEquals for comparing numeric

values.

Unit test execution

OK. To run it, we right-click and select Run Test.

Once the test execution is complete, we will see the new
window named TEST-RESULTS where we confirm that the test
was executed (UpdateTripPriceTest) and that the result was
successful because it is marked in green.

It also gives us information about the test execution time.
Here we see a line for each Assert we have defined in our test.
For each one we can see the expected result, the result
obtained, and the green or red mark depending on whether the
Assert failed or passed.

Unit test execution

The Data Provider is modified to generate a fault.

We are going to run the test again, but first we are going to return

the costs to the initial state, and modify the Data Provider assuming

that the trip with identifier TripId = 8 exists in the database and we

assign it a certain cost.

The idea is to generate a failure in this test set because our

procedure will indicate that the trip is not registered.

We run the test again by pressing this button, and see that a test

set failed since the expected value and the obtained value are

different:

From here, we can see the comparison between both results:

And from here we can run again the test sets that failed. We can

also export the test result to HTML.

Unit Tests automate parts of software testing and help us
develop more robust applications.

Although we have seen a simple example, as we have already said, we

can test all kinds of procedures, Data Providers and Business

Components. We can perform much more complex tests, using real

data from our application (either in a real or simulated database) and

cover the validation of a very important part of our application.

The set of unit tests that we build for each functionality automates part

of the regression testing, and helps us develop a more robust

application.

training.genexus.com
wiki.genexus.com

	Slide 1: Unit tests
	Slide 2: Automatic tests
	Slide 3: Automatic tests
	Slide 4: When is it interesting to test a GeneXus procedure? (GeneXus logic)
	Slide 5: Benefits
	Slide 6: Example: UpdateTripPrice
	Slide 7: Example: UpdateTripPrice
	Slide 8: Creation of the associated Unit test
	Slide 9: Creation of the associated Unit test
	Slide 10: Creation of the associated Unit test
	Slide 11: Unit test execution
	Slide 12: Unit test execution
	Slide 13
	Slide 14

