Logic for querying the database with GeneXus

For each command: Unique clause

GeneXus

For each DP Group

Unique

Grid

We will discuss in some detail the Unique clause applied to the For each
command, knowing that it can also be used in groups of data providers and grids
with a base table.

For each BaseTrn,, ..., BaseTrn,

skip expression, count expression,
order att,, att,, ..., att, [when condition]
order att,, att,, ..., att, [when condition]
order none [when condition]
unique att,, att,, ..., att,
using DataSelector (parm,, parm,, ..., parm,)
where condition [when condition]
where condition [when condition]
where att IN DataSelector (parm,, parm,, ..., parm,)
blocking n

main_code
when duplicate

when_duplicate_code
when none

when_none_code

endfor

Here we see it among the other clauses of the For each.

Navigation group uniqueD,E ——— Printinfo//D,E

| A | 8| c | D] E | F]G] H] I

When the value of a set of attributes is repeated for many records—in this
example, D and E—we can use the unique clause to work with one of all the
records whose value is repeated (as if it represented the group); for example,
printing the values of those attributes (since they will be the same for all the

records of the group), and then moving on to the next group, to do the same. And
so on until using all of them.

Navigation group uniqueD,E ——— Printinfo//D,E

skip expression, count expression,

order att,, att,, ..., att, [when condition]

order att,, att,, ..., att, [when condition]

order none [when condition]

unique att,, att,, ..., att,

using DataSelector (parm,, parm,, ..., parm,,)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm,, parm,, ..., parm,)
main_code

when duplicate
when_duplicate_code

when none
when_none_code

endfor

For this to make sense, only attributes whose value is unique for each and every
record in the group can appear in the code to be executed for each group.

The attributes included there do not have to be part of the same table. They can
be in the extended one.

GeneXus’

Navigation group uniqueD,E ——— Printinfo//D,E

A 8- | c | D | ()] F | G

:x
@
® O

L
@

Let’s suppose that this is a graphical representation of the extended table and not
a physical table.

For example, suppose that E is a foreign key that determines H and I. That is, this
physical table exists.

This means that for all the records in the group, since the values of E are the same,
the values of H and | will also be the same.

GeneXus’

Navigation group uniqueD,E —— Printinfo//D,E ,H,I

A~ | B8~ | C | D | E [F | G

@

@

@
®@ O

L
@

This means that we can also use the H and | attributes within the code that will be
executed for the group, since they will also be unique to that set of records.

E|-Tr\p for each Trip.Attraction
- Tripw ¥ Attractiontd order AttractionId
- Trippate - P Attractionhame for each Trip.Attraction
; TripDescription - & Countryld endfor
QE‘Attraction ¥ CountryName print AttractionInfo //AttractionName
? AftractionId A Categoryld endfor
¥ AttractionMame ~ ¥ Categoryhame
p TripAttractionVisitTime @ AftractionPhoto
- A Cityld for each Trip.Attraction
- ¥ CityName unique AttractionId
print AttractionInfo //AttractionName
endfor

Attractionld* AttractionName —
S : " : -
Tripld Attractionld TripAttractionVisitTime 1 e YINSETR

1 1 180

2 The Great Wall
3 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
2 10 120 7 Forbidden city
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

Let's see examples.

We have the trips that can be made to different tourist attractions with an
assigned amount of time for each visit.

We want to obtain a list of the tourist attractions included in these trips. Let's
suppose that this is the current data from the tables. We will want to list only
these attractions.

A first option could be to implement a control break that navigates TripAttraction
and groups by Attractionld.

In this way, we can be sure that we are only listing attractions actually included in
trips. Also, by placing the print command after the nested For each (although
placing it before would have been the same), we know that for each group we will
be printing only the AttractionName that is repeated.

This can be solved in a much simpler way using the Unique clause. It's the most
obvious use case.

for each Trip.Attraction

For Each TripAttraction (Line: 23) order AttractionId
for each Trip.Attraction
Aftractionld endfor
mtdext" T[!PA RACTION1 print AttractionInfo //AttractionName
raction
on filters: Start from FirstRecord endfor
Loop while NotEndCOfTable
Join location Server
for each Trip.Attraction
@:Epmtrachon { Inpld, Attractionid) INTO Attractionid unique AttractionId
=Attraction (Aftractionid } INTO AttractionName print AttractionInfo //AttractionName
endfor

Attractionld* AttractionName —
.) o . -
Tripld Attractionld TripAttractionVisitTime 1 L@ REED

1 1 180

2 The Great Wall
3 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
2 10 120 7 Forbidden city
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

In the navigation list of the For each with Unique, we see that since it has an index
by Attractionld in TripAttraction (because it is a foreign key) it will choose to sort
by that attribute.

Therefore, it starts in the first group where the value of Attractionld is repeated,
and its AttractionName (which is unique for all the records of the group) is printed
in the output: Louvre Museum.

Attraction
For Each TripAttraction {Line: 23) ctionId
Auraction Trip.Attraction
Order Attractionld Louvre Mussum
Index: ITRIPATTRACTION1 tractionInfo //AttractionName
Attractionld
Start from- FirstRecon Eiffel Tower
Loop while NotEndOfj
Join loc Server Matisse Museum
for each Trip.Attraction
EB-Tnpattraction (Tripld, Attraction/d) o Nuvolas unique AttractionId
=Attraction (Aftractionid) INTQ print AttractionInfo //AttractionName
Cingue Terre endfor

Attractionld* AttractionName —
P,) o . -
Tripld Attractionld TripAttractionVisitTime 1 L@ REED

1 1 180 2 The Great Wall

3 1 200 3 Eiffel Tower

1 3 120 4 Christ the Redeemer

3 6 180 5 Smithsonian Institute

4 6 240 6 Matisse Museum

2 10 120 7 Forbidden city

2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

The next group is a single record: Eiffel Tower is printed.

Then the attraction with ID 6, which is Matisse Museum. Then 10, and finally 12.

10

traction
For Each TripAttraction {Line: 23) ionId
Anra Atiraction rip.Attraction
Attractionld Louvrd Cinaue T
Index: ITRIPATTRACTION1 naue ferre actionInfo //AttractionName
Attractionld
nfilters: Start from: FirstRecor Eiffel 1] Eiffel Tower
Loop while NotEndOfj
Join location Server Matiss] Louvre Museum
traction
@:Epmtrachon (Iripld, Attractionid) | Rifugi Matisse Museum tionId
=Attraction (Attractionld) INT(} actionInfo //AttractionName
Cingug Rifugio Nuvolau

Attractionld* AttractionName —
P,) o . -
Tripld Attractionld TripAttractionVisitTime 1 L@ REED

1 1 180

2 The Great Wall
3 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
2 10 120 7 Forbidden city
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

If we wanted these attractions to be sorted by attraction name...

11

For Each TripAttraction (Line: 23)

Attraction

Order AttractionName Cinque Terre . A
for each Trip.Attraction

Attractionl|d Eiffal Tower order AttractionName

Start from: FirstRecord . .
Loop while NotEndOfTable unlqutf_‘ Attr‘aCtlor}Id .
Join location Server Louvre Museum print AttractionInfo //AttractionName
endfor
@Zmpﬁmraction (Tripld, Attractionld) INTO Attractionld Matisse Museum

=Attraction (Aftractionld) INTO AttractionName
Rifugio Nuveolau

Attractionld* AttractionName —
P,) o . -
Tripld Attractionld TripAttractionVisitTime 1 L@ REED

1 1 180 2 The Great Wall

3 1 200 3 Eiffel Tower

1 3 120 4 Christ the Redeemer

3 6 180 5 Smithsonian Institute

4 6 240 6 Matisse Museum

2 10 120 7 Forbidden city

2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

...we could add the order clause.

And so we see the navigation list. The single value being sought is still Attractionld
but the result of the query will be ordered by AttractionName.

12

For Each TripAttraction (Line: 23)
Attraction
Order AttractionName Cinque Terre N .
for each Trip.Attraction
. Aliadonid el Tower order AttractionName
n niters: >tart from IrStEeCort . .
Loop while NotEndOfTable unique AttractionId
Join location Server Louvre Museum print AttractionInfo //AttractionName
endfor
@Zmpﬁmraction (Tripld, Attractionld) INTO Attractionld Matisse Museum 5
=Attraction (Aftractionld) INTO AttractionName
Rifugio Nuveolau
For Each TripAttraction (Line: 23)
NONE . .
AttractionName for each Trip.Attraction
fiters: EH” o E”ﬁﬁifﬂgtﬁ unique AttractionName
o S olEndOrTable print AttractionInfo //AttractionName
endfor

@:Epmtracnon (Inpld, Attractionid) INTO Attractionld
—Aftraction (Atfractionld) INTO AftractionName

Could we instead use the AttractionName attribute directly in the unique clause?

Yes, but note two things. On one hand, doing this does not ensure that the list is
also sorted by AttractionName. Note that the navigation list shows Order NONE.
GeneXus doesn’t know about the existence of an index by AttractionName. So we
should still order by AttractionName if that is what we want.

On the other hand, let's think about what would happen if we had two attractions
with the same name in the database.

13

for each Trip.Attraction

? Tripld ? Attractionld order AttractionName
-Q'wmume ~§)A¢mdwwame unique AttractionId
: TripDescription - A Countryld print AttractionInfo //AttractionName
=[=] Attraction - ¥ CountryName endfor
? Aftractionld -~ A Categoryld
- W CategoryN . .
- @ Atractoniiame o aregorytiame for each Trip.Attraction
p TripAttractionVisitTime --AttractmnPhoto order AttractionName
- A Cityld . X
1y unique AttractionName
- ¥ CityName

print AttractionInfo //AttractionName
endfor

Attractionld* AttractionName —
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180

2 The Great Wall
2 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
5 8 60 7 Forbidden city
2 10 120 8 Louvre Museum
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

For example, 1 and 8. If we don't have a unique index by AttractionName this will
be allowed. And note that we have attraction 1 in 2 trips, and 8 in 1.

The only difference between this For each and this other one is the unique clause.
In the first case, these two records will be handled together, and Louvre Museum
will be listed; and this one will be handled separately, in another group, and
Louvre Museum will be listed again.

In the second case, however, the three records will be in the same group, and

Louvre Museum will be listed only once, even if it corresponds to two different
attractions.

14

=& Trip for each Trip.Attraction
? Tripld “f Attractionld order AttractionName
Q'wmmm “S)Aﬁmdwwame unique AttractionId
- ® TripDescription -~ A Countryld print AttractionInfo //AttractionName
=[=] attraction ¥ CountryName endfor
? AttractionId - A Categoryld
¥ Aftractioniame < ¥ caregoniame for each Trip.Attraction
p TripAttractionVisitTime --AttractionPhoto order AttractionName
-7 o unique AttractionName
- @ CityName

print AttractionInfo //AttractionName
endfor

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime AttractionName 1 Louvre Museum
1 1 180

Louvre Museum

2 The Great Wall
3 1 200 Louvre Museum 3 Eiffel Tower
1 3 120 Eiffel Tower 4 Christ the Redeemer
3 6 180 Matisse Museum 5 Smithsonian Institute
4 6 240 Matisse Museum 6 Matisse Museum
5 8 60 Louvre Museum 7 Forbidden city
2 10 120 Rifugio Nuvolau 8 Louvre Museum
2 12 90 Cinque Terre 10 Rifugio Nuvolau
12 Cinque Terre

We can see it very clearly if we imagine the data like this, with the extended table
as a super table.

15

= for each Trip.Attraction
¥ Tripd AttractionId order AttractionName
O Trippate - AttractionName unique AttractionId

* TripDescription - & Countryld print AttractionInfo //AttractionName
éEnc\ttraCtiUﬂ o4 CUUntWName end-For\
? AttractionId & Categoryld
- @ Atractoniiame " CategaryName for each Trip.Attraction
* [TripatiractionvisitTime & Attraction?hoto order AttractionName
-7 o unique AttractionName
¥ Cityliame

print AttractionInfo //AttractionName
endfor

Attractionld* AttractionName —
Tripld* Attractionld* TripAttractionVisitTime AttractionName 1 Louvre Museum
2 12 20

Cinque Terre

2 The Great Wall
1 3 120 Eiffel Tower 3 Eiffel Tower
1 1 180 Louvre Museum 4 Christ the Redeemer
3 1 200 Louvre Museum 5 Smithsonian Institute
5 60 Louvre Museum 6 Matisse Museum
3 6 180 Matisse Museum 7 Forbidden city
4 6 240 Matisse Museum 8 Louvre Museum
2 10 120 Rifugio Nuvolau 10 Rifugio Nuvolau
12 Cinque Terre

If we order it by AttractionName we see it more clearly... Note that there is no
problem with the attribute of the unique clause being in the extended table and
not in the base table.

In short, it will not be the same to ask for unique values for Attractionld and for
AttractionName.

If the unique index exists, then the result of both For each commands will be
exactly the same, because this record 8 cannot possibly exist.

16

. . &qty = Count(C) S
Navigation group unique D, E > puiinto//DE , &qty _3

| A | 8| c | D] E | F]G] H] I

In addition, we can not only keep one of the repeated records to do something
with the information that doesn't vary (like printing it), but we can also run
aggregation formulas on the repeated ones; for example, to count them. Of
course, the formula must navigate the same table.

So, we take the first group and run the count on its records (it will give 3 in this
case). And it prints D and E—information that is unique to that group—and 3.

Then the next group, for which the count will give 2.
Then the third one, for which the count will give 1. And finally the fourth one, for

which the count will give 3.

17

§ N e for each Trip.Attraction
- Trippate - Attractioniame unique AttractionId

- ® TripDescription - A Countryld &qty = Count(TripAttractionVisitTime)
B[=] atraction ¥ CountryName print AttractionInfo //AttractionName, &qty
! ? Attractiond - A Categoryld endfor
¥ AftractionName - W CategoryName
p TripAttractionVisitTime " AttractionPhoto
- A Cityld
- @ CityName

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180 2 The Great Wall

3] 1 200 3 Eiffel Tower

1 3 120 4 Christ the Redeemer

3 6 180 5 Smithsonian Institute

4 6 240 6 Matisse Museum

5 8 60 7 Forbidden city

2 10 120 8 Louvre Museum

2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

In this example, besides keeping the non-repeated Attractionld to list its name, we
want to count how many times it is repeated.
In short, the number of trips where it is present.

18

- ? Attractmn[d
- p AftractionName

- A Countryld

- CountryName

- © Trippate

® TripDescription

1= Attraction

: ? AftractionId

W AftractionMame

p TripAttractionVisitTime

- A Categoryld

- CategoryName
-- AttractionPhoto
- A Cityld

- W CityName

Tripld* Attractionld* TripAttractionVisitTime

1 1 180
3 1 200
1 3 120
3 6 180
4 6 240
5 8 60

2 10 120
2 12 90

for each Trip.Attraction
unique AttractionId
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
endfor

For Each TnipAttraction (Line: 23)

Attractionld
Index: ITRIPATTRACTION1
Attractionld

Start from FirstRecord
Loop while NotEndOfTable
Server

@:Epmtraclion (Tripld, Atfractionld) INTO Attractionld
=Attraction (Affractionld) INTO AttractionName
=count(TripAttractionVisitTime) navigation (Attractionid)

Formulas

Navigation to evaluate: count(TripAttractionVisitTime)

Given: Aftractionld
Index ITRIPATTRACTION
Group by: Attractionld

@:Tripmtraction (Attractionid)

The Count formula is using the secondary attribute of the table you want to
navigate, so when this is determined, the Count formula will have a special
behavior: it will group by the unique attribute, as we see in the navigation list.

19

E|- Trip
? Tripw ¥ attractiontd for each Trip.Attraction
O Tripbate {7 AttractionName unique AttractionId
- ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
5[=] Attraction ¢ CountryName print AttractionInfo //AttractionName, &qty
- ¥ attractionid o @ Categoryld endfor
[Options % For Each TnipAttraction (Line: 23)
Build
Comparer Attractionld
e Index: ITRIPATTRACTION/
KB Explorer Close Generator False Attractionld
Knowledge Base Close Specifier False filters: Start from FirstRecord
Sutpm Loop while NotEndOfTable
attems . - —
Search = Server
Table & Transaction Diagrams Background Specification True
I:Em Development Build With This Only Check @:Epmtraclion (Tnipid, Attractionld) INTO Attractionid
emes
Trace Call tree for Build Full =Attraction (Affractionld) INTO AttractionName
e Concurrent Generation True @:coum(TripAttractionVisitTime) navigation (Atfraction/d)
Concurrent Generation Instances 4
Concurrent Specification Instances 5 Formulas
Navigation to evaluate: count(TripAttractionVisitTime)
Detailed Navigation Given: Aftractionld
Show detailed navigation Index ITRIPATTRACTION
< > Group by: Attractionld
Gonce

@:Tripmtraction (Attractionid)

Remember that for the list to show the navigation of the formula we must activate
the detailed navigation... through Tools/Options....

20

B.
Atvaction Trips for each Trip.Attraction
unique AttractionId
I 2 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1
endfor

Matisse Museum 2

Lousre Museum ; For Each TnipAttraction (Line: 23)

Rifugio Muvolau 1 Attractionld

Index: ITRIPATTRACTION1
. Attractionld
Cinque Terre ! Start from FirstRecord
Loop while NotEndOfTable
Tripld* Attractionld* TripAttractionVisitTime Server
1 1 180 @:Epmtraclion (Tripld, Atfractionld) INTO Attractionld
3 1 200 =Attraction (Attractionld) INTO AttractionName
=count(TripAttractionVisitTime) navigation (Attractionid)
1 3 120
3 6 180 Formulas
4 6 240
5 8 60 Navigation to evaluate: count(TripAttractionVisitTime)
2 10 120 Given: Attractionld
Index ITRIPATTRACTION

2 12 90

Group by: Attractionld

@:Tripmtraction (Attractionid)

Then, for each group of repeated ones, it will count the records for that given
Attractionld, that of each group. Thus, the first group with repeated Attractionld is
obtained, its records are counted—those with the same Attractionld—and the
attraction name and that number are printed in the output.

21

B.
Atvaction Trips for each Trip.Attraction
unique AttractionId
Louvre Museum 2 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1
endfor

Matisse Museum 2

Louvre Museum 1

Rifugio Nuvelau 1

Cingue Terre 1

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180

2 The Great Wall
3] 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
5 8 60 7 Forbidden city
2 10 120 8 Louvre Museum
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

Then the next group, for which the count is 1.

22

B.
Atvaction Trips for each Trip.Attraction
unique AttractionId
Louvre Museum 2 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1
endfor

Matisse Museum 2

Louvre Museum 1

Rifugio Nuvelau 1

Cingue Terre 1

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180

2 The Great Wall
3] 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
5 8 60 7 Forbidden city
2 10 120 8 Louvre Museum
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

Then the next one, which gives 2.

23

B.
Atvaction Trips for each Trip.Attraction
unique AttractionId
Louvre Museum 2 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1
endfor

Matisse Museum 2

Louvre Museum 1

Rifugio Nuvelau 1

Cingue Terre 1

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180

2 The Great Wall
3] 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
5 8 60 7 Forbidden city
2 10 120 8 Louvre Museum
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

The next one, with the same name as the first one, gives 1.

24

B.
Atvaction Trips for each Trip.Attraction
unique AttractionId
Louvre Museum 2 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1
endfor
Matisse Museum 2

Louvre Museum 1

Rifugio Nuvelau 1

Cingue Terre 1

Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180 2 The Great Wall

3] 1 200 3 Eiffel Tower

1 3 120 4 Christ the Redeemer

3 6 180 5 Smithsonian Institute

4 6 240 6 Matisse Museum

5 8 60 7 Forbidden city

2 10 120 8 Louvre Museum

2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

The next one also gives 1, and the last one too.

On the other hand, if instead of Attractionld...

25

Attraction Trips for each Trip.Attraction
unique AttractionName
Cinque Terre 1 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1 endfor
Louvre Museum &
Matisse Museum 2

Rifugio Nuvolau 1
Attractionld* AttractionName _
Tripld* Attractionld* TripAttractionVisitTime 1 Louvre Museum

1 1 180

2 The Great Wall
3] 1 200 3 Eiffel Tower
1 3 120 4 Christ the Redeemer
3 6 180 5 Smithsonian Institute
4 6 240 6 Matisse Museum
5 8 60 7 Forbidden city
2 10 120 8 Louvre Museum
2 12 90 10 Rifugio Nuvolau
12 Cinque Terre

...we use AttractionName in the unique clause, the group corresponding to Louvre
Museum will count 3 records.

26

Attraction Trips for each Trip.Attraction
unique AttractionName
Cinque Terre 1 &qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty
Eiffel Tower 1 endfor
Louvre Museum 3 For Each TnpAttraction (Line: 23)
NONE
Matisse Museum 2 AftractionName
on filters: Start from: FirstRecord
Loop while: NotEndOfTable
Rifugio Nuvolau 1 Join location Server
Tripld* Attractionld* TripAttractionVisitTime @:Epmtraclion (Tripld, Attractionid) INTO Attractionld
1 1 180 @:Atlracticn (Attractionid) INTO AttractionName
_ . . e ation { Aranti
3 1 200 count(TripAttractionVisitTime) navigation (AtfractionName)
1 3 120 Formulas
8 6 180
4 6 240 Mavigation to evaluate: count(TripAttractionVisitTime)
5 8 60 Given: AttractionName
Index: ITRIPATTRACTION

2 o 220 Group by: AttractionName
2 12 90

@:Epmlra ction
=Attraction (Aftractionid)

In the navigation, we see Given and Group by.

27

B B%Attractmn e
- ¥ Tripu - ¥ Atractionrd for each Trip.Attraction
7 Tripbate - Attractioniame unique AttractionName
- ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
BE‘ Attraction - o CountryName
? Aftractionld - M Categoryld

print AttractionInfo //AttractionName, &qty

¥ AttractionName - ¥ CategoryName endfor
Q—'Fﬂpﬁ&raetraﬂ%‘rsﬁw @ AttractionPhoto
- A Cityld
- o CityName

Let's look at this particular case. If there is no secondary attribute in the table we
want to navigate, then we may have to do something so that GeneXus
understands that we want to navigate that table for the formula.

28

¥ Tripu - ¥ atractionid
. p TripDate - p AftractionName

: TripDescription - A Countryld
BE‘ Attraction - o CountryName
? Aftractionld - A Categoryld
¥ AttractionName - o CategoryName
Q—'Fﬂp,k&rae&amﬁw @ AttractionPhoto

- A Cityld
- o CityName

For Each TripAttraction (Line

NONE
AftractionName

FirstRecord
NotEndOfTable

n location Server

@:TriDAnrachon (Tripld, Attractionld) INTO Attractionld
=Attraction (Aftractionid)} INTO AttractionName
%xount(ﬁm) navigation (Tripld, Attractionid)

Formulas

Navigation to evaluate: count(Tripld)

Index: ITRIPATTRACTION

F-Trip

raction

for each Trip.Attraction
unique AttractionName
&qty = Count(TripId), AttractionId.IsEmpty() or
not AttractionId.IsEmpty())
print AttractionInfo //AttractionName, &qty
endfor

For Each TrnpAttraction (Line: 23)

NCNE
AttractionName

filters: Start from FirstRecord
Loop while NotEndOfTable
Server

@=Ep#\nract\onw Tripid, Attractionid) INTO Attractionld
=Attraction (Atfractionid) INTO AttractionName
=count(Tripld) navigation (AftractionfName)

Formulas

Navigation to evaluate: count(Tripld)

ere: Attractionld. isempty() or not Attractionld. isempty()
en AttractionName

Index ITRIPATTRACTION

Group by: AttractionName

%ZMpAnracmn
=Attraction (Attractionid)

That is to say, if, for example, we place the Tripld attribute for the Count and in
unique we leave AttractionName, GeneXus may not choose the TripAttraction
table to solve the Count formula, but Trip, and the result will not be the desired

one.

It is reported that it will navigate the Trip table and count all the trips then,
because there is no condition reported for the formula.

It should choose to navigate TripAttraction for it to do what we want. Since we
don't have a base transaction for the formulas, we can use a trick: add a condition
that is always true and contains an attribute that causes it to determine the base

table we want.

For example, this condition that uses Attractionld and that will always be true.
Note the navigation list indicating what we want.

Now it is navigating TripAttraction and also grouping by the AttractionName given
in the For each; therefore, only counting the tripattractions of the same

AttractionName.

29

. p TripDate

: TripDescription

BE‘ Aftraction

? AttractionId

W AfttractionMame

p TripAttractionVisitTime

- ? AttractionId

- Attractioniame
-~ A Countryld

- o CountryName
- A Categoryld

- o CategoryMame
@ AttractionPhoto
- A Cityld

- o CityName

TripDate TripDescription

1/1/2023
4/4/2023
8 1/1/2023
4 5/5/2023

Tripld* Attractionld* TripAttractionVisitTime

1 1
2 1
O
6

4 6
3 8

180
200
120
180
240
60

raction

for each Trip.Attraction
unique TripDate, Attr

actionName

>y = Count(TripAttractionVisitTime)

print AttractionInfo //TripDate, AttractionName, &qty

endfor

01/01/2023 Eiffel Tower1

Attractionld* AttractionName —

3

1
8
6

Eiffel Tower
Louvre Museum
Louvre Museum

Matisse Museum

Let's go a little further. We know that we can specify several attributes in the
unique clause, and that they do not have to belong to the base table of the For

each, as in this example.

We want to count the number of trips that include a visit to the same attraction
name on the same date. That is, for the same TripDate and AttractionName, how
many records there are in TripAttraction.

If this is the data from the tables (we only show the relevant records), we see that
for Eiffel Tower there will only be one record in TripAttraction: the one for trip 1,

which is on this date.

30

§ Tripw - ¥ atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate, AttractionName

+- ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
5[] Attraction -« CountryName print AttractionInfo //TripDate, AttractionName, &qty
? AttractionId A Categoryld endfor
¥ Attractionbame o CategoryName

& TripAttractionVisitTime +[Za] attractionPhoto
A Cityld
"¢ Ciyllame 01/01/2023 Eiffel Tower 1
01/01/2023 Louvre Museum 2
1/1/2023
7 4/4/2023
@ 1/1/2023
1 5/5/2023

Attractionld* TripAttractionVisitTime
1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum

3 6 180 8 Louvre Museum

4 6 240 6 Matisse Museum
@ 8 60

We have the Louvre Museum in these 3 records. When we look at the dates, for
trip 1 and for trip 3 they are the same, so in the output we will have...

31

§ Tripw - ¥ atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate, AttractionName

+- ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
5[] Attraction -« CountryName print AttractionInfo //TripDate, AttractionName, &qty
? AttractionId A Categoryld endfor
¥ Attractionbame o CategoryName

Q TripAttractionVisitTime " AftractionPhoto
- A Cityld
@ Cityllame 01/01/2023 Eiffel Tower 1
1/1/2023
1/ 4/4/2023 Louvre Museum 1
2 4/4/2023
@ 1/1/2023
4 5/5/2023

Attractionld* TripAttractionVisitTime
1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum

3 6 180 8 Louvre Museum

4 6 240 6 Matisse Museum
@ 8 60

And for 2 it's this other one, so this will be shown in the output.

32

§ Tripw - ¥ atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate, AttractionName

-+ ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
éEAttraction -« CountryName print AttractionInfo //TripDate, AttractionName, &qty
? AttractionId A Categoryld endfor

¥ AftractionName -« CategoryName

Q TripAttractionVisitTime " AftractionPhoto
- A Cityld
@ Cityllame 01/01/2023 Eiffel Tower 1
1/1/2023 Louvre Museum 2
1 1/1/2023
1 4/4/2023 Louvre Museum 1
2 4/4/2023
@ 1/1/2023 01/01/2023 Matisse Museum 1
N
4 5/5/2023 05/05/2023 Matisse Museum 1

Tripld* Attractionld* TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —

2 1 200 3 Eiffel Tower
1 3 120 1 Louvre Museum
Q 6 180 8 Louvre Museum
Y 6 240 6 Matisse Museum
3 8 60

Lastly, for Matisse Museum: we have trip 3 and 4, which, since they have different
dates, will lead to two prints in the output.

33

raction

E|'Tr\|:|
- 7 Tripud - ¥ atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate, AttractionName
+- ® TripDescription A Countryld &qty = Count(TripAttractionVisitTime)
5[] Attraction -« CountryName print AttractionInfo //TripDate, AttractionName, &qty
? Aftractionld A Categoryld endfor

¥ AftractionName -« CategoryName

p TripAttractionVisitTime " AftractionPhoto
- A Cityld
@ Cityllame 01/01/2023 Eiffel Tower 1
01/01/2023 Louvre Museum 2
1 1/1/2023
1 4/4/2023 Louvre Museum 1
2 4/4/2023
3 1/1/2023 01/01/2023 Matisse Museum 1
& 5/5/2023 05/05/2023 Matisse Museum 1

Tripld* Attractionld* TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum
3 6 180 8 Louvre Museum
4 6 240 6 Matisse Museum
3 8 60

In this example, neither of the two attributes of the unique clause belongs to the
base table of the For each.

We could also use formulas in the unique clause, as long as they are global.

34

raction

E|'Tr\|:|
-7 Tripd - ¥ Atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate.Year(), AttractionName
TripDescription - A Countryld &tripYear = TripDate.Year()

éEAttraction ¥ CountryName &qty = Count(TripAttractionVisitTime)
- 9 astroctiond & Categoryld print AttractionInfo //&tripYear, AttractionName, >y
¥ AftractionName - ¥ CategoryName endfor

p TripAttractionVisitTime " AftractionPhoto
- A Ctyld
" ¥ Cityliame 2023 Eiffel Tower 1
1/1/2023
4/4/2023—_ 2024
3 1/1/2023
4 5/5/2023

Tripld* Attractionld* TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower
@ 3 120 1 Louvre Museum
6 180 8 Louvre Museum
4 6 240 6 Matisse Museum
3 8 60

For example, let's suppose we want to count the trips by attraction name,
according to the year of the trip. That is, for each attraction name, by year, how
many trips itisin.

We will be tempted to write this unique clause, so that if we change the year of
trip 2, for this other one, then the output would have to be as follows:

AttractionName Eiffel Tower is only on one trip, so its year is listed and the count
will give 1.

35

-9 Atractionid for each Trip.Attraction
- Attractioniame unique TripDate.Year(), AttractionName
- ® TripDescription - A Countryld &tripYear = TripDate.Year()
ég,mmm - CountryName &qty = Count(TripAttractionVisitTime)
- § Attractiontd ~ A Categoryld print AttractionInfo //&tripYear, AttractionName, &qty
¥ AttractionName ~ ¥ Categorylame endfor
Q TripAttractionVisitTime " AftractionPhoto
- A Cityld
" ¥ Cityliame 2023 Eiffel Tower 1
2023 Louvre Museum 2
1/1/2023
2 4/4/2023— 2024
@ 1/1/2023
4 5/5/2023

Attractionld* TripAttractionVisitTime
1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum

3 6 180 8 Louvre Museum

4 6 240 6 Matisse Museum
@ 8 60

Then comes Louvre Museum which is on 3 trips. The year of 1 and 3 match, so the
output will show this.

36

-9 Atractionid for each Trip.Attraction
- Attractioniame unique TripDate.Year(), AttractionName
- ® TripDescription & Countryld &tripYear = TripDate.Year()
éE‘Attraction -« CountryName &qty = Count(TripAttractionVisitTime)
- § attractiontd A Categoryld print AttractionInfo //&tripYear, AttractionName, &qty
¥ AftractionName o CategoryName endfor
Q TripAttractionVisitTime " AftractionPhoto
- A Cityld
¢ CityName 2023 Eiffel Tower 1
1 1/1/2023
2024 Louvre Museum 1

4/4/20623— 2024
1/1/2023
5/5/2023

N
2
.
),
4
TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —
N
2
1
3
©

200 Eiffel Tower

1

3 120 Louvre Museum
6 180 Louvre Museum
6
8

A 00 =, Ww

240 Matisse Museum

60

Since the year for trip 2 is different, this will be shown in the output.

37

raction

¥ Tripud - ¥ Atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique TripDate.Year(), AttractionName
- ® TripDescription - A Countryld &tripYear = TripDate.Year()
&[=] attraction ¥ CountryName &qty = Count(TripAttractionVisitTime)
f AttractionId - M Categoryld print AttractionInfo //&tripYear, AttractionName, &qty
¥ AftractionName o CategoryName endfor

Q TripAttractionVisitTime " AftractionPhoto
A Cityld
¥ Cityiame 2023 Eiffel Tower 1
Tripld* TripDescription 2023 Louvre Museum 2
1 1/1/2023
2024 Louvre Museum 1
2 4/4/2023—_ 2024

1/1/2023 2023 Matisse Museum 2
5/5/2023

Tripld* Attractionld* TripAttractionVisitTime

2 1 200 8 Eiffel Tower
1 3 120 1 Louvre Museum
6 180 8 Louvre Museum
6 6 240 6 Matisse Museum
3 8 60

Then we move on to the last AttractionName, which is on two trips, 3 and 4, which
are from the same year. So, the output will look as follows.

38

- ¥ Atractionid for each Trip.Attraction
- Attractioniame unique TripDate.Year(), AttractionName
: ® TripDescription - A Countryld &tripYear = TripDate.Year()
&[=] attraction ¥ CountryName &qty = Count(TripAttractionVisitTime)
: § attractiontd A Categoryld print AttractionInfo //&tripYear, AttractionName, &qty
¥ AftractionName o CategoryName endfor
p TripAttractionVisitTime " AftractionPhoto
- A Cityld
- @ CityName For each BaseTrn,, .., BaseTrn,

skip expression, count expression,

Tripld* TripDate TripDescription order att,, att,, ..., att, [when condition]

1 1/1/2023 order att,, att,, ..., att,, [when condition]
2 4/4/2023— 2024 order none [when condition]
unique att,, att,, ..., att,
3 1/1/2023 using DataSelector (parm,, parmy, ..., parm,,)
4 5/5/2023 where condition [when condition]

where condition [when condition]

Tripld* Attractionld* TripAttractionVisitTime where att IN DataSelector (parm,, parm,, ..., parm,)

1 1 180 blocking n

main_code
2 1 200 when duplicate
1 3 120 when_duplicate_code
3 6 180 when none

when_none_code
4 6 240

endfor

3 8 60

The problem is that we will not be allowed to use an expression in the unique
clause. We can only place attributes, as is clear from the syntax.

But those attributes may well be formula attributes.

39

o _ B@Attractmﬂ

¥ Triptd ¥ Attracionid for each Trip.Attraction
 Tripdate - Attractioname unique ~ TripYear , AttractionName
/B, Tripyear TripDate.year() - # Countryld &tripYear = TripDate.Year()
- ® TripDescription * @ CountryName &qty = Count(TripAttractionVisitTime)
é-EAttractian » A Categoryld print AttractionInfo //&tripYear, AttractionName, &qty
-9 attractiontd * ¥ CategoryName endfor
@ AftractionName @ AftractionPhoto
- TripAttractionVisitTime © A Cityd
- o CityName

For Each TripAttraction (Line: 23)

FirstRecord
NotEndOfTable

n locatio:

ﬁiﬂpmtracuon (Tripid. Aftractionld) INTO Tripld Attractionld
=Trip (Tripld) INTO TripYear TripDate
=Attraction (Aftractionid) INTO AttractionName

=count(TripAttractionVisitTime) navigation (TripDate., year(), AftractionName)

Formulas

Navigation to evaluate: count(TripAttractionVisitTime)
Given AttractionName
Index ITRIPATTRACTIO
Group by:TripDate . y

@:mpmwacmn

=Attraction (Attractionld)

Therefore, if the example had a TripYear attribute—formula—and we used it in

the unique clause, everything would work as expected, as shown in the navigation
list.

40

For each BaseTrn,, ..., BaseTrn, Restrictions

skip expression, count expression,
order att,, att,, ..., att, [when condition]
order att,, att,, ..., att, [when condition]
order none [when condition]
unique att,, att,, ..., att,
using DataSelector (parm,, parm,, ..., parm,,)
where condition [when condition]
where condition [when condition]
where att IN DataSelector (parm,, parm,, ..., parm,)
blocking n

main_code
when duplicate

when_duplicate_code
when none

when_none_code

endfor

A restriction we saw is that only attributes (which can be formulas) but not
expressions can be used.

Another restriction: only attributes that have unique values for those in the unique
clause can be included in the main code or body of the For each.

E|- Trip raction
- ¥ Tripu - ¥ Atractionid for each Trip.Attraction
- Tripbate - Attractioniame unique AttractionId
+- ® TripDescription A Countryld >y = Count(TripAttractionVisitTime)
5[] Attraction -« CountryName print AttractionInfo //AttractionName, &qty
? Aftractionld A Categoryld endfor
¥ AttractionName o CategoryName

p TripAttractionVisitTime @ AftractionPhoto
- A Cityld
- o CityName
Louvre Museum 2
Louvre Museum 1

Tripld* Attractionld* TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum
3 6 180 8 Louvre Museum
4 6 240 6 Matisse Museum
3 8 60

In this example, where we are asking for unique tripattraction values according to
Attractionld, we see that these two records will be processed once and Louvre
Museum will be displayed together with 2 as the count result. On the other hand,
this other record will be processed alone, showing Louvre Museum and 1 in the
output.

In the printblock it was possible to put AttractionName because for each
Attractionld of the unique clause its value is unique. We could also place
CountryName, CityName, CategoryName; that is, unique attributes for
Attractionld. But if we had placed TripAttractionVisitTime or TripDate, we would
get an error.

42

¥ Tripm - ¥ Atractionid for each Trip.Attraction
- Trippate - Attractioniame unique AttractionName

+- ® TripDescription A Countryld >y = Count(TripAttractionVisitTime)
éEAttraction -« CountryName print AttractionInfo //AttractionName, &qty, AttractionId
? AttractionId A Categoryld endfor
¥ Attractionbame o CategoryName

p TripAttractionVisitTime @ AftractionPhoto
- A Ctyld
- o CityName

Louvre Museum 3

Tripld* Attractionld* TripAttractionVisitTime
1 1 180 Attractionld* AttractionName —

2 1 200 8 Eiffel Tower

1 3 120 1 Louvre Museum
3 6 180 8 Louvre Museum
4 6 240 6 Matisse Museum
3 8 60

There are more subtle cases that can mislead us. For example, what would happen
if instead of Attractionld we placed AttractionName in the unique clause?

With this code there will be no problem, but it will show something different than
the previous one if there are attractions with repeated names, as in this case.
The reason is that it will group these 3 records and will show 3 as the result of the
count.

What would happen if out of distraction we put Attractionld in the printblock? We

would get the same error as if we put Tripld or TripDate.
That is because from an AttractionName you don't get a single Attractionld.

43

B-@ Trip = raction
- Tripw - ¥ atractionid for each Trip.Attraction
. p TripDate = P AttractionName order AttractionId
; TripDescription & Countryld unique AttractionName
= =] Attraction ¢ Countryliame Where TripDate > &today
-9 attractiontd - A Categoryld &qty = Count(TripAttractionVisitTime, TripDate>&today)
¥ AftractionName ~ ¥ Categorylame print AttractionInfo //AttractionName, &qty
p TripAttractionVisitTime @ AftractionPhoto endfor
- A Cityld
- o CityName
For each BaseTrn,, ..., BaseTrn
skip expression,; count expression,
order att,, att,, ..., att, [when condition]
order att,, att,, ..., att, [when condition]
order none [when condition]
unique att,, att,, ..., att,
using DataSelector (parm,, parm,, ..., parm,,)
where condition [when condition]
where condition [when condition]
where att IN DataSelector (parm,, parm , parm,,)
blocking n
main_code

when duplicate
when_duplicate_code
when none
when_none_code

endfor

The restriction only applies to the body of the For each, not to the other clauses. In
particular, it doesn't apply to the filters. That is, it applies to what happens after
the records have been sorted and filtered.

So, for example, we might want to list every attraction name included in trips after
today's date, together with the number of trips they are in. And with the query
sorted by Attractionld.

44

E|- Trip B@Att action
-7 Tripd - ¥ Atractionid for each Trip.Attraction
7 Tripbate - Attractioniame order AttractionId
- ® TripDescription - A Countryld unique AttractionName
= =] Attraction ¢ Countryliame Where TripDate > &today
- 9 astroctiond & Categoryld &qty = Count(TripAttractionVisitTime, FripBate>&teday)
¥ Aftractioniame ~ ¥ Categorylame print AttractionInfo //AttractionName, >y
p TripAttractionVisitTime @ AftractionPhoto endfor
- A Cityld
- o CityName

&today: 3/3/2023

1 1/1/2023 Louvre Museum 2 Louvre Museum 4
2 4/4/2023
3 1/1/2023
4 5/5/2023

Tripld* Attractionld* TripAttractionVisitTime

1 1 180

1 3 120 1 Louvre Museum
3 8 60 3 Eiffel Tower
4 8 240 8 Louvre Museum

If this is the data and the date of the &today variable, let's think about what
should be the result of the query.

The TripAttraction table is run through by Attractionld, but also the records that
share the same AttractionName are considered only once. In this case, for the first
record there will be these four. But of those, how many will pass the filter? The
first one does not, the second one does, the third one does not, and the fourth
one does.

If the Count formula also includes the same condition, then the output will show
Louvre Museum, and 2.

If we had not added the same filter condition for the formula, Louvre Museum and
4 would be displayed.

Next, we go to the next record to process in the For each. It is the only one left,
and its date doesn't meet the filter, so nothing else is processed. The final result
will be this (depending on whether or not the filter condition was added to the
formula).

45

for each Trip.Attraction

For Each TripAttraction (Line: 16 .
or Bach TripAtraction (Line. 16) order AttractionId
Attractionld unique A'Ftr‘actlonName
Index: ITRIPATTRACTION1 Where TripDate > &today
W S &qty = Count(TripAttractionVisitTime, FripBate>&teday)
Loop while NotEndOfTable print AttractionInfo //AttractionName, &qty
TripDate > &Today endfor
Server
%ZmpAnrachon (Tripld, Affractionld) INTO Tripld Attractionld
E=Trip (Tripfd) INTO TripDate
=Attraction (Aftractionld) INTO AtiractionName
=count(TripAttractionVisitTime) navigation { Aftractionfame)
Formulas Formulas

Navigation to evaluate: count(TripAttractionVisitTime) .
g ’ LR Navigation to evaluate: count(TripAttractionVisitTime)

Where: TrpDate = &Today

Given: AftractionName &Today Given: AttractionName

Index ITRIPATTRACTION Index ITRIPATTRACTION
Group by- AttractionName Group by: AttractionName
%zﬁm @:Epmlractisn
=Trip (Tripld) =Attraction (Attractionid)

=Attraction (Affractionld)

In fact, if we look at the navigation list, we can clearly see that the formula is
calculated as we want. Let's look at the Group by and how the Where shows the
filter on the records to be counted.

If we remove the Count condition, then the navigation list will inform this for the
formula.

46

For each BaseTrn,, ..., BaseTrn, Restrictions

skip expression, count expression,

order att,, att,, ..., att, [when condition]
order att,, att,, ..., att, [when condition]
order none [when condition]

unique att,, att,, ..., att,

using DataSelector (parm,, parm,, ..., parm,,)
where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm,, parm,, ..., parm,)
blocking n For each # Base table

main_code
when duplicate
when_duplicate_code endfor
when none

when_none_code

endfor

Finally, let's mention the last restriction: if we use a unique clause, it only makes
sense to nest another For each if it doesn't have the same base table. That is to
say, we cannot use unique in control breaks, as one might think at first.

E|'Tr\|:|
- ¥ Tripu - § attractionid For each Trip.Attraction
- Tripbate - AttractionName order AttractionName
- ® TripDescription & Countryld print AttractionInfo //AttractionName
= =] Attraction ~ ¥ Counfryliame For each Trip.Attraction
§ Attractiontd - & Categoryld print TripAttractionInfo //TripDate TripAttractionVisitTime

¥ AttractionName - ¥ CategoryName endfor

{7 TripattractionVisitTime 2] AttractionPhoto endfor
- A Cityld
- CityName
Eiffel Tower
. " . e 01/01/2023 120
Tripld* TripDate TripDescription
2 4/4/2023
3 1/1/2023
4 5/5/2023

Tripld* Attractionld* TripAttractionVisitTime l

1 1 180

1 3 3 Eiffel Tower
3 8 60 1 Louvre Museum
4 8 240 8 Louvre Museum

So, for example, if we want a list of the attractions included in trips, with the
duration of the visit to the attraction in each of those trips, we will have no
alternative but to implement it as the typical control break.

We run through TripAttraction sorted by AttractionName and, for the first
TripAttraction record with the first AttractionName, we print the attraction name.
Then we iterate through the records with the same AttractionName, here only this
one. We print the date of the trip and the length of the visit, and move on to the
next group...

48

E|'Tr\|:|
- ¥ Tripu - § attractionid For each Trip.Attraction
- Tripbate - AttractionName order AttractionName

- ® TripDescription & Countryld print AttractionInfo //AttractionName
I[=] attraction ¥ Countryliame For each Trip.Attraction
§ Attractiontd - & Categoryld print TripAttractionInfo //TripDate TripAttractionVisitTime

¥ AftractionName ~ ¥ Categoryliame endfor
& 2 TripattractionVisitTime +[2a] AttractionPhoto endfor

- A Cityld

- CityName

Eiffel Tower

01/01/2023 120
Tripld* TripDate TripDescription 101/

1 Louvre Museum
2

01/01/2023 180
3

4/4/2023 200
4

1/1/2023 60

5/5/2023 240
Tripld* Attractionld* TripAttractionVisitTime l

1 1 @

z : e
1 3 120 3 Eiffel Tower

3 8 @ 1 Louvre Museum

4 8 @ 8 Louvre Museum

...which is the one corresponding to these records with the same name in
Attraction. We print the name, and again, iterate with the nested For each as long
as the AttractionName doesn't change. And so the output is...

49

GeneXus’

=B T | |
-~y Triptd - ¥ Attractiontd For each Trip.Attraction
- Tripbate - AttractionName order AttractionName

- ® TripDescription & Countryld print AttractionInfo //AttractionName
= =] Attraction ~ ¥ Counfryliame For each Trip.Attraction
i"? AttractionId - & Categoryld print TripAttractionInfo //TripDate TripAttractionVisitTime
¥ Attractionbame ~ ¥ CategoryName endfor

p TripAttractionVisitTime @ AttractionPhoto endfor
- A Cityld

- CitvName

For each Trip.Attraction
unique AttractionName
print AttractionInfo //AttractionName
For each Trip.Attraction
print TripAttractionInfo //TripDate TripAttractionVisitTime
endfor
endfor

@ spc0211 Unique clause in break group not supported in group starting at line 24.

If we wanted to implement this with the unique clause, GeneXus would not allow
it. The navigation list would show this error.

50

B Atracton For each Attraction i
- ¥ atractionid Brazi 1
order CountryName
- Attractioniame -
A Countryld unique CountryName France 3
- @ CountryName &q‘.cy = c?unt(AttractlonName) Ohlala
A Categoryld print MainInfo //CountryName, &qty Liberte
- CategoryName for e:f\ch Hotel i Cinaue Terre .
-[Za) AttractionPhoto print HotelInfo //HotelName q
- A Cityld endfor Imperio
¥ CityName endfor
¥ hotend l
p HotelName Attractionld* AttractionName Countryld — Countryld*
- # Countryld 2 Christ 5 5 Brazil
¢ Countryhame 3 Eiffel Tower 2 2 France
- A Cityld
@ CityName 1 Louvre Museum 2 15 Italy
8 Matisse Museum 2
4 Cinque Terre 15

? CountryId

p CountryName

1 2

¥ cind Ohlala

- cityName
3 Imperio 15
4 Liberte 2

But we can nest a For each that navigates another table.

For example, let's see this case in which we are navigating the attractions table
sorting by CountryName, from the extended one, and asking to process only once
all the records that repeat the value of CountryName.

For them, we want to count the attractions of the same country, print that country
with the number of attractions, and navigate the Hotel table printing the names of
hotels in the same country.

So, with this data, the output will look like this. Here we have the Attraction table
sorted by CountryName.

There is only one record for the country of the first record: its country is then
listed and 1 for the count. Since there is no hotel in Brazil, it will go on to the next
record in Attraction, which will be 3, corresponding to France. There are 3 records
with the country France, so in the output you will see... Then the nested For each
is run, and it will print the hotels in France. Therefore, the output will show...

And finally we will have...

51

For Each Attraction (Line: 47)

rder CountryName For each Attraction
order CountryName

unique CountryName
&qty = count(AttractionName)

CountryName

N ters: Start from FirstRecord
Loop while NotEndOfTable
e print MainInfo //CountryName, >y
EE- Attraction (Attractionid) INTO Countryld for each Hotel
FE-Country { Countryld) INTO CountryName print HotelInfo //HotelName
) endfor

=count(AttractionName) navigation (CountryName)

endfor

Formulas

Navigation to evaluate: count(AttractionName)

Given CountryName
ndex ATTRACTION
Group by: CountryName

@=Attract\on
=Country (Countryld)

»

B

For Each Hotel (Line: 54)

Orde Hotelld
ndex: IHOTEL
CountryName = @CountryName

Server

@=Hote\ (Hotelld) INTO Countryld HotelName
@:Cou ntry (Countryld) INTO CountryName

The navigation list will clearly show that the implementation is as we wanted. Note
the Constraint of the nested For each by CountryName.

52

For each DP Group

Unique

Grid

Finally, let's mention again that although we focused on the unique clause for the
For each command, its logic applies to all other forms of queries.

53

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

54

