
………..……………………………………………………

Logic for querying the database with GeneXus

For each command: Unique clause

1

………..……………………………………………………

For each DP Group

Grid

Unique

We will discuss in some detail the Unique clause applied to the For each
command, knowing that it can also be used in groups of data providers and grids
with a base table.

2

………..……………………………………………………

Here we see it among the other clauses of the For each.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

For each

endfor

BaseTrn1 , … , BaseTrnn

………..……………………………………………………

Navigation group

A* B* C D E F G H I

unique D, E Print info // D, E

When the value of a set of attributes is repeated for many records—in this
example, D and E—we can use the unique clause to work with one of all the
records whose value is repeated (as if it represented the group); for example,
printing the values of those attributes (since they will be the same for all the
records of the group), and then moving on to the next group, to do the same. And
so on until using all of them.

4

………..……………………………………………………

Navigation group

A* B* C D E F G H I

unique D, E Print info // D, E

For this to make sense, only attributes whose value is unique for each and every
record in the group can appear in the code to be executed for each group.

The attributes included there do not have to be part of the same table. They can
be in the extended one.

5

………..……………………………………………………

Navigation group

A* B* C D E F G H I

unique D, E Print info // D, E

E* H I J

Let’s suppose that this is a graphical representation of the extended table and not
a physical table.

For example, suppose that E is a foreign key that determines H and I. That is, this
physical table exists.

This means that for all the records in the group, since the values of E are the same,
the values of H and I will also be the same.

6

………..……………………………………………………

Navigation group

A* B* C D E F G H I

unique D, E Print info // D, E

E* H I J

, H, I

This means that we can also use the H and I attributes within the code that will be
executed for the group, since they will also be unique to that set of records.

7

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

for each Trip.Attraction
unique AttractionId

print AttractionInfo //AttractionName
endfor

for each Trip.Attraction
order AttractionId

for each Trip.Attraction
endfor
print AttractionInfo //AttractionName

endfor

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

Let's see examples.

We have the trips that can be made to different tourist attractions with an
assigned amount of time for each visit.

We want to obtain a list of the tourist attractions included in these trips. Let's
suppose that this is the current data from the tables. We will want to list only
these attractions.

A first option could be to implement a control break that navigates TripAttraction
and groups by AttractionId.

In this way, we can be sure that we are only listing attractions actually included in
trips. Also, by placing the print command after the nested For each (although
placing it before would have been the same), we know that for each group we will
be printing only the AttractionName that is repeated.

This can be solved in a much simpler way using the Unique clause. It's the most
obvious use case.

8

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

print AttractionInfo //AttractionName
endfor

for each Trip.Attraction
order AttractionId

for each Trip.Attraction
endfor
print AttractionInfo //AttractionName

endfor

In the navigation list of the For each with Unique, we see that since it has an index
by AttractionId in TripAttraction (because it is a foreign key) it will choose to sort
by that attribute.

Therefore, it starts in the first group where the value of AttractionId is repeated,
and its AttractionName (which is unique for all the records of the group) is printed
in the output: Louvre Museum.

9

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
order AttractionId

for each Trip.Attraction
endfor
print AttractionInfo //AttractionName

endfor

for each Trip.Attraction
unique AttractionId

print AttractionInfo //AttractionName
endfor

The next group is a single record: Eiffel Tower is printed.

Then the attraction with ID 6, which is Matisse Museum. Then 10, and finally 12.

10

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
order AttractionId

for each Trip.Attraction
endfor
print AttractionInfo //AttractionName

endfor

for each Trip.Attraction
unique AttractionId

print AttractionInfo //AttractionName
endfor

If we wanted these attractions to be sorted by attraction name...

11

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction

unique AttractionId
print AttractionInfo //AttractionName

endfor

order AttractionName

...we could add the order clause.

And so we see the navigation list. The single value being sought is still AttractionId
but the result of the query will be ordered by AttractionName.

12

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction

print AttractionInfo //AttractionName
endfor

unique AttractionName

for each Trip.Attraction

unique AttractionId
print AttractionInfo //AttractionName

endfor

order AttractionName

vs

Could we instead use the AttractionName attribute directly in the unique clause?

Yes, but note two things. On one hand, doing this does not ensure that the list is
also sorted by AttractionName. Note that the navigation list shows Order NONE.
GeneXus doesn’t know about the existence of an index by AttractionName. So we
should still order by AttractionName if that is what we want.

On the other hand, let's think about what would happen if we had two attractions
with the same name in the database.

13

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
order AttractionName
unique AttractionName

print AttractionInfo //AttractionName
endfor

for each Trip.Attraction
order AttractionName
unique AttractionId

print AttractionInfo //AttractionName
endfor

For example, 1 and 8. If we don't have a unique index by AttractionName this will
be allowed. And note that we have attraction 1 in 2 trips, and 8 in 1.

The only difference between this For each and this other one is the unique clause.

In the first case, these two records will be handled together, and Louvre Museum
will be listed; and this one will be handled separately, in another group, and
Louvre Museum will be listed again.

In the second case, however, the three records will be in the same group, and
Louvre Museum will be listed only once, even if it corresponds to two different
attractions.

14

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime AttractionName

1 1 180 Louvre Museum

3 1 200 Louvre Museum

1 3 120 Eiffel Tower

3 6 180 Matisse Museum

4 6 240 Matisse Museum

5 8 60 Louvre Museum

2 10 120 Rifugio Nuvolau

2 12 90 Cinque Terre

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
order AttractionName
unique AttractionName

print AttractionInfo //AttractionName
endfor

for each Trip.Attraction
order AttractionName
unique AttractionId

print AttractionInfo //AttractionName
endfor

We can see it very clearly if we imagine the data like this, with the extended table
as a super table.

15

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime AttractionName

2 12 90 Cinque Terre

1 3 120 Eiffel Tower

1 1 180 Louvre Museum

3 1 200 Louvre Museum

5 8 60 Louvre Museum

3 6 180 Matisse Museum

4 6 240 Matisse Museum

2 10 120 Rifugio Nuvolau

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
order AttractionName
unique AttractionName

print AttractionInfo //AttractionName
endfor

for each Trip.Attraction
order AttractionName
unique AttractionId

print AttractionInfo //AttractionName
endfor

If we order it by AttractionName we see it more clearly... Note that there is no
problem with the attribute of the unique clause being in the extended table and
not in the base table.

In short, it will not be the same to ask for unique values for AttractionId and for
AttractionName.

If the unique index exists, then the result of both For each commands will be
exactly the same, because this record 8 cannot possibly exist.

16

………..……………………………………………………

Navigation group

A* B* C D E F G H I

unique D, E
Print info // D, E

&qty = Count(C)

, &qty

In addition, we can not only keep one of the repeated records to do something
with the information that doesn't vary (like printing it), but we can also run
aggregation formulas on the repeated ones; for example, to count them. Of
course, the formula must navigate the same table.

So, we take the first group and run the count on its records (it will give 3 in this
case). And it prints D and E—information that is unique to that group—and 3.
Then the next group, for which the count will give 2.
Then the third one, for which the count will give 1. And finally the fourth one, for
which the count will give 3.

17

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

In this example, besides keeping the non-repeated AttractionId to list its name, we
want to count how many times it is repeated.
In short, the number of trips where it is present.

18

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

The Count formula is using the secondary attribute of the table you want to
navigate, so when this is determined, the Count formula will have a special
behavior: it will group by the unique attribute, as we see in the navigation list.

19

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

Remember that for the list to show the navigation of the formula we must activate
the detailed navigation... through Tools/Options....

20

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

Then, for each group of repeated ones, it will count the records for that given
AttractionId, that of each group. Thus, the first group with repeated AttractionId is
obtained, its records are counted—those with the same AttractionId—and the
attraction name and that number are printed in the output.

21

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

Then the next group, for which the count is 1.

22

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

Then the next one, which gives 2.

23

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

The next one, with the same name as the first one, gives 1.

24

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

The next one also gives 1, and the last one too.

On the other hand, if instead of AttractionId...

25

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

...we use AttractionName in the unique clause, the group corresponding to Louvre
Museum will count 3 records.

26

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

3 1 200

1 3 120

3 6 180

4 6 240

5 8 60

2 10 120

2 12 90

AttractionId* AttractionName …

1 Louvre Museum …

2 The Great Wall …

3 Eiffel Tower …

4 Christ the Redeemer …

5 Smithsonian Institute …

6 Matisse Museum ….

7 Forbidden city …

8 Louvre Museum

10 Rifugio Nuvolau …

12 Cinque Terre

for each Trip.Attraction
unique AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

In the navigation, we see Given and Group by.

27

………..……………………………………………………

for each Trip.Attraction
unique AttractionName

&qty = Count(TripAttractionVisitTime)

print AttractionInfo //AttractionName, &qty
endfor

Let's look at this particular case. If there is no secondary attribute in the table we
want to navigate, then we may have to do something so that GeneXus
understands that we want to navigate that table for the formula.

28

………..……………………………………………………

for each Trip.Attraction
unique AttractionName

&qty = Count(TripId)

print AttractionInfo //AttractionName, &qty
endfor

, AttractionId.IsEmpty() or
not AttractionId.IsEmpty())

That is to say, if, for example, we place the TripId attribute for the Count and in
unique we leave AttractionName, GeneXus may not choose the TripAttraction
table to solve the Count formula, but Trip, and the result will not be the desired
one.
It is reported that it will navigate the Trip table and count all the trips then,
because there is no condition reported for the formula.

It should choose to navigate TripAttraction for it to do what we want. Since we
don't have a base transaction for the formulas, we can use a trick: add a condition
that is always true and contains an attribute that causes it to determine the base
table we want.
For example, this condition that uses AttractionId and that will always be true.
Note the navigation list indicating what we want.

Now it is navigating TripAttraction and also grouping by the AttractionName given
in the For each; therefore, only counting the tripattractions of the same
AttractionName.

29

………..……………………………………………………

for each Trip.Attraction
unique TripDate, AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //TripDate, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

01/01/2023 Eiffel Tower 1

Let's go a little further. We know that we can specify several attributes in the
unique clause, and that they do not have to belong to the base table of the For
each, as in this example.

We want to count the number of trips that include a visit to the same attraction
name on the same date. That is, for the same TripDate and AttractionName, how
many records there are in TripAttraction.

If this is the data from the tables (we only show the relevant records), we see that
for Eiffel Tower there will only be one record in TripAttraction: the one for trip 1,
which is on this date.

30

………..……………………………………………………

for each Trip.Attraction
unique TripDate, AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //TripDate, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

01/01/2023 Eiffel Tower 1

01/01/2023 Louvre Museum 2

We have the Louvre Museum in these 3 records. When we look at the dates, for
trip 1 and for trip 3 they are the same, so in the output we will have...

31

………..……………………………………………………

for each Trip.Attraction
unique TripDate, AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //TripDate, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

01/01/2023 Eiffel Tower 1

01/01/2023 Louvre Museum 2

4/4/2023 Louvre Museum 1

And for 2 it's this other one, so this will be shown in the output.

32

………..……………………………………………………

for each Trip.Attraction
unique TripDate, AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //TripDate, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

01/01/2023 Eiffel Tower 1

1/1/2023 Louvre Museum 2

4/4/2023 Louvre Museum 1

01/01/2023 Matisse Museum 1

05/05/2023 Matisse Museum 1

Lastly, for Matisse Museum: we have trip 3 and 4, which, since they have different
dates, will lead to two prints in the output.

33

………..……………………………………………………

for each Trip.Attraction
unique TripDate, AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //TripDate, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

01/01/2023 Eiffel Tower 1

01/01/2023 Louvre Museum 2

4/4/2023 Louvre Museum 1

01/01/2023 Matisse Museum 1

05/05/2023 Matisse Museum 1

In this example, neither of the two attributes of the unique clause belongs to the
base table of the For each.

We could also use formulas in the unique clause, as long as they are global.

34

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

For example, let's suppose we want to count the trips by attraction name,
according to the year of the trip. That is, for each attraction name, by year, how
many trips it is in.

We will be tempted to write this unique clause, so that if we change the year of
trip 2, for this other one, then the output would have to be as follows:

AttractionName Eiffel Tower is only on one trip, so its year is listed and the count
will give 1.

35

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

2023 Louvre Museum 2TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

Then comes Louvre Museum which is on 3 trips. The year of 1 and 3 match, so the
output will show this.

36

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

2023 Louvre Museum 2

2024 Louvre Museum 1

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

Since the year for trip 2 is different, this will be shown in the output.

37

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

2023 Louvre Museum 2

2024 Louvre Museum 1

2023 Matisse Museum 2

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

Then we move on to the last AttractionName, which is on two trips, 3 and 4, which
are from the same year. So, the output will look as follows.

38

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

2023 Louvre Museum 2

2024 Louvre Museum 1

2023 Matisse Museum 2

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

The problem is that we will not be allowed to use an expression in the unique
clause. We can only place attributes, as is clear from the syntax.

But those attributes may well be formula attributes.

39

………..……………………………………………………

for each Trip.Attraction
unique TripDate.Year(), AttractionName

&tripYear = TripDate.Year()
&qty = Count(TripAttractionVisitTime)
print AttractionInfo //&tripYear, AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

2023 Eiffel Tower 1

2023 Louvre Museum 2

2024 Louvre Museum 1

2023 Matisse Museum 2

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

2024

TripYear

Therefore, if the example had a TripYear attribute—formula—and we used it in
the unique clause, everything would work as expected, as shown in the navigation
list.

40

………..……………………………………………………

A restriction we saw is that only attributes (which can be formulas) but not
expressions can be used.

Another restriction: only attributes that have unique values for those in the unique
clause can be included in the main code or body of the For each.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

Restrictions

………..……………………………………………………

for each Trip.Attraction
unique AttractionId

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

Louvre Museum 2

Louvre Museum 1

In this example, where we are asking for unique tripattraction values according to
AttractionId, we see that these two records will be processed once and Louvre
Museum will be displayed together with 2 as the count result. On the other hand,
this other record will be processed alone, showing Louvre Museum and 1 in the
output.

In the printblock it was possible to put AttractionName because for each
AttractionId of the unique clause its value is unique. We could also place
CountryName, CityName, CategoryName; that is, unique attributes for
AttractionId. But if we had placed TripAttractionVisitTime or TripDate, we would
get an error.

42

………..……………………………………………………

for each Trip.Attraction
unique AttractionName

&qty = Count(TripAttractionVisitTime)
print AttractionInfo //AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 6 180

4 6 240

3 8 60

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

6 Matisse Museum ….

Louvre Museum 3

, AttractionId

There are more subtle cases that can mislead us. For example, what would happen
if instead of AttractionId we placed AttractionName in the unique clause?

With this code there will be no problem, but it will show something different than
the previous one if there are attractions with repeated names, as in this case.
The reason is that it will group these 3 records and will show 3 as the result of the
count.

What would happen if out of distraction we put AttractionId in the printblock? We
would get the same error as if we put TripId or TripDate.
That is because from an AttractionName you don't get a single AttractionId.

43

………..……………………………………………………

for each Trip.Attraction
order AttractionId
unique AttractionName
Where TripDate > &today

&qty = Count(TripAttractionVisitTime, TripDate>&today)
print AttractionInfo //AttractionName, &qty

endfor

The restriction only applies to the body of the For each, not to the other clauses. In
particular, it doesn't apply to the filters. That is, it applies to what happens after
the records have been sorted and filtered.

So, for example, we might want to list every attraction name included in trips after
today's date, together with the number of trips they are in. And with the query
sorted by AttractionId.

44

………..……………………………………………………

for each Trip.Attraction
order AttractionId
unique AttractionName
Where TripDate > &today

&qty = Count(TripAttractionVisitTime, TripDate>&today)
print AttractionInfo //AttractionName, &qty

endfor

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 8 60

4 8 240

AttractionId* AttractionName …

1 Louvre Museum …

3 Eiffel Tower …

8 Louvre Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

&today: 3/3/2023

Louvre Museum 2 Louvre Museum 4

If this is the data and the date of the &today variable, let's think about what
should be the result of the query.

The TripAttraction table is run through by AttractionId, but also the records that
share the same AttractionName are considered only once. In this case, for the first
record there will be these four. But of those, how many will pass the filter? The
first one does not, the second one does, the third one does not, and the fourth
one does.

If the Count formula also includes the same condition, then the output will show
Louvre Museum, and 2.
If we had not added the same filter condition for the formula, Louvre Museum and
4 would be displayed.

Next, we go to the next record to process in the For each. It is the only one left,
and its date doesn't meet the filter, so nothing else is processed. The final result
will be this (depending on whether or not the filter condition was added to the
formula).

45

………..……………………………………………………

for each Trip.Attraction
order AttractionId
unique AttractionName
Where TripDate > &today

&qty = Count(TripAttractionVisitTime, TripDate>&today)
print AttractionInfo //AttractionName, &qty

endfor

In fact, if we look at the navigation list, we can clearly see that the formula is
calculated as we want. Let's look at the Group by and how the Where shows the
filter on the records to be counted.

If we remove the Count condition, then the navigation list will inform this for the
formula.

46

………..……………………………………………………

Finally, let's mention the last restriction: if we use a unique clause, it only makes
sense to nest another For each if it doesn't have the same base table. That is to
say, we cannot use unique in control breaks, as one might think at first.

skip expression1 count expression2

order att1, att2, … , attn [when condition]

order att1, att2, … , attn [when condition]

order none [when condition]

unique att1, att2, … , attn

using DataSelector (parm1, parm2, … , parmn)

where condition [when condition]

where condition [when condition]

where att IN DataSelector (parm1, parm2, … , parmn)

blocking n

main_code

when duplicate

when_duplicate_code

when none

when_none_code

BaseTrn1 , … , BaseTrnnFor each

endfor

For each

endfor

≠ Base table

Restrictions

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 8 60

4 8 240

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

Eiffel Tower

01/01/2023 120

For each Trip.Attraction
order AttractionName

print AttractionInfo //AttractionName
For each Trip.Attraction

print TripAttractionInfo //TripDate TripAttractionVisitTime
endfor

endfor

So, for example, if we want a list of the attractions included in trips, with the
duration of the visit to the attraction in each of those trips, we will have no
alternative but to implement it as the typical control break.

We run through TripAttraction sorted by AttractionName and, for the first
TripAttraction record with the first AttractionName, we print the attraction name.
Then we iterate through the records with the same AttractionName, here only this
one. We print the date of the trip and the length of the visit, and move on to the
next group...

48

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 8 60

4 8 240

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

Eiffel Tower

01/01/2023 120

For each Trip.Attraction
order AttractionName

print AttractionInfo //AttractionName
For each Trip.Attraction

print TripAttractionInfo //TripDate TripAttractionVisitTime
endfor

endfor

Louvre Museum

01/01/2023 180

4/4/2023 200

1/1/2023 60

5/5/2023 240

...which is the one corresponding to these records with the same name in
Attraction. We print the name, and again, iterate with the nested For each as long
as the AttractionName doesn't change. And so the output is...

49

………..……………………………………………………

TripId* AttractionId* TripAttractionVisitTime

1 1 180

2 1 200

1 3 120

3 8 60

4 8 240

AttractionId* AttractionName …

3 Eiffel Tower …

1 Louvre Museum …

8 Louvre Museum ….

TripId* TripDate TripDescription

1 1/1/2023 …

2 4/4/2023 …

3 1/1/2023 …

4 5/5/2023 …

Eiffel Tower

01/01/2023 120

For each Trip.Attraction
order AttractionName

print AttractionInfo //AttractionName
For each Trip.Attraction

print TripAttractionInfo //TripDate TripAttractionVisitTime
endfor

endfor

Louvre Museum

01/01/2023 180

4/4/2023 200

1/1/2023 60

5/5/2023 240

For each Trip.Attraction
unique AttractionName

print AttractionInfo //AttractionName
For each Trip.Attraction

print TripAttractionInfo //TripDate TripAttractionVisitTime
endfor

endfor

If we wanted to implement this with the unique clause, GeneXus would not allow
it. The navigation list would show this error.

50

………..……………………………………………………

AttractionId* AttractionName CountryId …

2 Christ 5 …

3 Eiffel Tower 2 …

1 Louvre Museum 2 …

8 Matisse Museum 2 ….

4 Cinque Terre 15 …

For each Attraction
order CountryName
unique CountryName

&qty = count(AttractionName)
print MainInfo //CountryName, &qty
for each Hotel

print HotelInfo //HotelName
endfor

endfor

CountryId* CountryName

5 Brazil

2 France

15 Italy

HotelId* HotelName CountryId …

1 Oh la la 2 …

3 Imperio 15 ….

4 Liberte 2 …

Brazil 1

Oh la la

France 3

Liberte

Cinque Terre 1

Imperio

But we can nest a For each that navigates another table.

For example, let's see this case in which we are navigating the attractions table
sorting by CountryName, from the extended one, and asking to process only once
all the records that repeat the value of CountryName.

For them, we want to count the attractions of the same country, print that country
with the number of attractions, and navigate the Hotel table printing the names of
hotels in the same country.

So, with this data, the output will look like this. Here we have the Attraction table
sorted by CountryName.
There is only one record for the country of the first record: its country is then
listed and 1 for the count. Since there is no hotel in Brazil, it will go on to the next
record in Attraction, which will be 3, corresponding to France. There are 3 records
with the country France, so in the output you will see... Then the nested For each
is run, and it will print the hotels in France. Therefore, the output will show...

And finally we will have...

51

………..……………………………………………………

For each Attraction
order CountryName
unique CountryName

&qty = count(AttractionName)
print MainInfo //CountryName, &qty
for each Hotel

print HotelInfo //HotelName
endfor

endfor

The navigation list will clearly show that the implementation is as we wanted. Note
the Constraint of the nested For each by CountryName.

52

………..……………………………………………………

For each DP Group

Grid

Unique

Finally, let's mention again that although we focused on the unique clause for the
For each command, its logic applies to all other forms of queries.

53

………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

54

