
Types of Web Panels

In previous videos, we have built a solution from scratch, very similar to
the one that the Work With pattern builds automatically.

their different design. That is because, so far, we were focused on logic
leaving the User Interface aside, an aspect we'll get into later on. Apart
from the visual differences, both web panels are showing a grid with
information on tourist attractions, with filters, and the possibility to, for
example, update information.

In both solutions, the transaction is invoked in Update mode.

Something to be noted from the beginning is a common feature on all the
screens navigated. Regardless of the page you open, you will see this part.

For instance, if you directly invoke the parallel transaction
AttractionWithoutParameters, it is right here.
it is right here.

Or, if you now go to the View of an attraction -
one you implemented from scratch-, note that, beyond those differences,
they continue to have this aspect in common.

?

If you now go to GeneXus to see the form of this View you implemented,
where is this common feature?

You will not find it either when opening the Attraction transaction, or the
parallel transaction that doesn't receive parameters, and going to its Form.

What you see here is a textblock control with the name of the transaction.
Below is an ErrorViewer control showing messages such as success or

Where is the upper sector?

Master Page

When you look at the transaction properties you will see a Web
Transaction group with four significant properties: the first one to assign
the object with which the style will be applied, the second one to specify
the template that will be used to generate the Form, the third one will be
explained hereafter, and the fourth one is the Master page property.
There, you will indicate the master page where the page corresponding to
this transaction object should be loaded. Note that it offers options that
correspond to all master pages defined so far in your KB. These pages are
created upon the creation of a KB so you will have some by default, but
you can still create others. Note that the transaction was created by
default in association with this master page.

If you now open the other objects that you saw in runtime, it will be no
surprise that they also have a master page, and it is the same one. And
you will also note that the web panels also have the same four properties.

So let's look for this master page and see what it's all about. If you don't
know where it is, you may look for it here and open it.

If you look at its properties, you will see one called Style and one called
Type, but Master Page is no longer there. Why? Because it is a special type
of web panel, the Master Page type. A web panel of this type will have a

special control called ContentPlaceHolder. This is where any page that
has this one as its master page will be loaded.

Then the transaction will be loaded into this space, with the view, and
everything else we saw.

Master Page

Here is the text block control that you see in runtime called Application
Name. For example, try to change it to Travel Agency.
Here you have an image that may also be changed for this one that you
previously inserted in the KB.

Note the effect of these changes on your application. Here they are...

Another control that you will see in this Master Panel is a User Control
called Sidebar, that is typical of the Unanimo design system. This control
comes by default showing a deployable side bar that provides access to
various objects.

Web Component

We have already seen two of the three types of web screens: the master
page, and the common web page, which is what we have been working
with so far every time we create a web panel or a transaction. We only
have to study the web page of component type.

To do this, let's go back over our steps a little and remember what we had
implemented in the previous videos. We had the limitation of the
attractions Work With element, where the user could filter by country by
choosing a value in this variable, which was being used in the grid
conditions to filter by that country if the variable was not empty.

But also, from this panel the user could see the information of an
attraction, clicking on its name, and at the same time, from there, a link
was displayed above the country name to show all the relevant
information of the country.

Web Component

That's why we called this web panel that received the country identifier in
the attribute, and showed its name, and then a grid identical to the first
one, with the same filters by attraction name, the same columns and
actions and general info, and also information about the cities.

Web Component

We can clearly see that part of this panel is almost identical to the other
one. Let's suppose that we no longer want the Update option to be offered
with this image, but we want it to be as it is in the pattern, with the word
UPDATE.

We will have to replace this image with a text block on both panels. To
avoid these duplications and to program the behavior and design of a part
of the panel only once, we have web panels of the component type.

Web Component

What is repeated in this case? This whole section of the screen and its
behavior.

Then we did a Save as of this web panel, to which we only removed the
CountryId variable from the form and placed it, instead, as a parameter.
It will no longer be entered directly by the user in the form of this screen,
but will be received from the caller.

We see that the conditions remain identical, as do the events and
everything else. The other change is that we modified the Type property,
switching it to Component. From now on, this web panel can be a
component of another one.

Component

So, the next thing we did was a Save as of our original panel, and replaced
all those controls that we now place in the component web panel, with a
component type control. Of course we deleted (here we leave comments)
all the events that will now be in the component.

By placing a control of this type, we are saying that whatever we specify
must be loaded and executed in there. We have to tell it that an instance
of the web component we have just shown, CountryAttractionsInfo, has to
be created in that component. We can do it in a static way, indicating it in
the properties; here we indicate which will be the component type object

We see exactly the same. If we filter by name of attraction... it's working
perfectly.
Now, what happens if we want to filter by country? Nothing happens.
Why?

Component

The CountryId variable is on a different panel than the attraction grid
through which it is filtered. Here we have to use the ControlValueChanged
event, which captures the moment the value of the &CountryId variable
control is changed, and have a new instance of the component created,
passing it now the new value of the variable.

We refresh, and try to filter by France. Perfect. And there by attraction
name. Perfect also.

Component

And, of course, we did something similar with the panel that showed the
country information.

We did a Save as of this panel, replacing this whole section with a
component that will be loaded with this panel.

This way, in the new panel the CountryId is not a variable, but it is received
in a parameter. So, we can create the component instance in a static way,
only once inside the execution of this web panel, passing it here the
parameter that in this case comes in the attribute received in the parm
rule.

Note that from the original panel we removed the controls and
programming of events associated with the attractions, and only left those

To do this, we invoke this panel and not the previous one.

Now let's change the image to perform the UPDATE, and place the text
UPDATE instead.

Web Component

To do so, in the component web panel we create a variable of Character
(20) type. We insert it in the grid. In the Start event we assign it the
UPDATE value, which is what we want the user to see. We removed the
assignment of an image to the variable we had, because we are going to
remove it from the grid.

And now let's take the title off the new variable and make it Read only.

change it so that it is the click of the new variable and not the old one.

Now we run it...

We check how it looks in the pattern... Why does it have this much nicer
design here?

Let's find the control properties in the web panel generated by the

And let's see the values of these properties for our control, the one we
inserted manually in the web panel. They are different. Let's assign them
the same ones as those of the pattern. And try it.

We can see it here. Here we begin to understand how to manipulate the
design of the screens.

Types of Web Panels

Web PageMaster Page Component

In summary: We have seen three types of web panels that are related to
each other.

The Master Page type, which offers a common layout for all the pages of
the application or a part of it, so as not to have to repeat the same thing
every time, for each page. For example, the menus usually go there. This
object in particular contains in its form a special control,
ContentPlaceHolder, where the web pages will be loaded.

That of Web Page type, which is the one we have been studying, can have
a specific Master Page associated with it and only one, since it will be
loaded in its ContentPlaceHolder.

And that of Component type, which is useful precisely to reuse the same
design and programming in different objects. In order to have an object
defined as a component type web panel loaded into another web object,
the component type control is used, which can be loaded either statically
or dynamically.

The more components we identify, and use, the better the app will be.

Of course, there is much more to study on this topic (for example, what

happens with the execution of events in a panel with components, how a
component is refreshed, etc.). But this is more than enough for now.

training.genexus.com
wiki.genexus.com

