Database Update

Using Two-level Business Components

GeneXus

Two-level BC

ii@kitﬂour Subtype Supertype
¥ cityTourld = A\ ciyTourAttraction]
p CityTourName ? CityTourAttractionId AttractionId
} CityTourAttractionName Aftractioniame
P o CityTourAttractionCountryld CountryId

¥ CountryName CityTourAttractionCountryName CountryName

& Cityld CityTourAttractionCityld Cityld

¥ CityName CityTourAttractionCityName CityName

/a\, CityTourDuration

== Attraction

el AftractionN

9 CityTourAttractionld P Aﬁramm"A::e
raction. ress
CityTourAttractionName Msg("The city tour should have a name") If CityTourName.IsEmpty(); A Countryld
Sy CityTourAttractionCountryld
Sy CityTourAttractionCountryN Error('The Tour country should be the same than the attraction') 1 i
ityFourAtiractionCountryName if CountryId<>CityTourAttractionCountryld; 2 Cityld

Sy CityTourAttractionCityId ¥ CityName
S CityTourAttractionCityName Er'r“or'F'Tha? Tour (%ty should be ‘.che %ame than the attraction') A Categoryld
o CityFourAtiractionDuration if CityId<>CityTourAttractionCityId; ¥ CategoryName

Error('Visiting time must be greater than zero')
if CityTourAttractionDuration <= @;

Suppose a CityTour transaction has been created to represent the
tours that are offered to the travel agent's customers for visiting
the different tourist attractions of a given city.

It is a two-level transaction: in the first level, in addition to the
name of the tour, you specify its country and city, and the
estimated duration of the entire tour, which is the sum of the
estimated visiting times for each attraction.

The sublevel indicates the tourist attractions included in the tour,
for which it was necessary to define a group of subtypes, since in
the first level you need to specify the country and city of the city
tour. In addition, attractions have a country and city, which must
be checked to make sure they match those of the tour.

Note that CityTourAttracionld is a subtype of Attractionld, so it is
like the same attribute, and therefore will be a foreign key in the
second level table of CityTour.

That table will also have the secondary attribute
CityTourAttractionDuration, to specify how long the visit to that
attraction is estimated to last.

Insert many lines

Travel Agency

City Tours =8 Qo Y

City Tour Country Name
rance

Tourld Tour Name Country Name City Name Total Duration

Basic Paris France Paris 410 UPDATE DELETE

France Paris 380 UPDATE DELETE

X

The pattern Work With a CityTour has been applied, and also to the
attractions, in order to work more comfortably. And some data has
been loaded.

For example, note that for Paris only two city tours have been created.
The first one has the Louvre and the Eiffel Tower, and the second one
only the Eiffel Tower.

Suppose that when the back-office user is working with the tourist
attractions to enter a new one into the system -for example, Notre
Dame cathedral- this one should be automatically added to all the city
tours corresponding to the city of the attraction -in this case, Paris-,
with a fixed duration for the visit of 120 minutes, which can be later
modified. How do we get this behavior?

Insert many lines

Structure |

Attraction X A4
= Web Form I:l Events | Variables | Patterns|
AttractionId = &AttractionId if not &AttractionId.IsEmpty();]
noaccept(AttractionId); E]
noprompt(AttractionId); =~

<

o]

10

el
L e B

bR BRI o
Wk = O m =] m

CountryId = &Insert_Countryld if &Jlode = TrnMode.Insert and not &Insert_CountryId.IsEmpty();
noaccept(CountryId) if &Jode = TrnMode.Insert and not &Insert CountryId.TIsEmpty();

Cityld = &Insert CityId if &Mode = TrnMode.Insert and not &Insert Cityld.IsEmpty();
noaccept(CityId) if &vode = TrnMode.Insert and not &Insert CityId.IsEmpty();

Categoryld = &Insert Categoryld if &Yode = TrnMode.Insert and not &Insert CategoryId.IsEmpty();
noaccept(Categoryld) if &Mode = TrnMode.Insert and not &Insert CategoryId.IsEmpty();}

/* Generated by Work With Pattern [End] - Do not change */

Error("The attraction name should not be empty™)
if AttractionName.IsEmpty();

AddToCityTour (AttractionId)
on AfterInsert;

In short, as soon as a new attraction is inserted through this
transaction, it is required that a new line with that attraction is
automatically inserted for all city tours that have the same country
and city, with a duration of 120 minutes.

Then, on Afterinsert -that is, immediately after the new attraction
has been inserted in the Attraction table-, we will call a procedure to
which we will pass the identifier of that entered attraction, and that
will be in charge of inserting the line for the city tours that it finds
with the same country and city.

=

=HE CityTour

¥ cityTourtd

p CityTourName
A Countryld
CountryName
Cityld

CityName

\ CityTourDuration
Attraction

&cityTour

9 CityTourAttractionId
CityTourAttractionName
Sy CityTourAttractionCountryld

Sy CityTourAttractionCountryName
Sy CityTourAttractionCityld

Sy CityTourAttractionCityName

¢ CityTourAttractionDuration

= Business Components

CityTour
City Tour Attraction

CityTourld

4

CityTourName

Basic Paris

Countryld

2

CountryName

France

Cityld

1

CityName

Paris

CityTourDuration

410

CityTourAttractionld

Attraction

CityTourAttractionName

Louvre Museum

&cityTour.Insert()
&cityTourUpdate()

&cityTour.Delete()

CityTourAttractionCountryld

2

CityTourAttractionCountryName

France

CityTourAttractionCityld

CityTourAttractionCityName

Paris

CityTourAttractionDuration

150

l

CityTourAttractionld

3

CityTourAttractionName

Eiffel Tower

CityTourAttractionCountryld

2

CityTourAttractionCountryName

France

CityTourAttractionCityld

CityTourAttractionCityName

Paris

CityTourAttractionDuration

260

When you turn on the Business Component property of the
transaction, two business components will

be automatically
created in the KB and not just one, as you might think.

The first is the expected one, with a structure like the one
displayed. So, if city tour 4 has two lines, the structure of a variable
of the CityTour Business Component data type will be like the one
represented here, where the last element, Attraction, is a collection
of lines. Each line will correspond, in turn, to a structured data item.

With what structure?

transaction.

That of the
CityTour.Attraction, which

Business
is the one for each

Component
line of the

That is, while the Business Component corresponding to the
transaction as a whole is the one that will allow you to perform the
Insert, Update and Delete operations on the database, the one

created for the lines is only to be used as a data structure.

¥ cityTourtd
: p CityTourName
Countryld
- o CountryName
- A Cityld
¥ CityName
A CityTourDuration
=I{=] Attraction
CityTourAttractionId
; CityTourAttractionName
Sy CityTourAttractionCountryld
-8y CityTourAttractionCountryName
-8 CityTourAttractionCityld
Sy CityTourAttractionCityName
© CityTourAttractionDuration

= Business Components
CityTour
City Tour. Attraction

&cityTour

CityTourAttractionld

CityTourAttractionName

Louvre Museum

CityTourld 4
CityTourName Basic Paris
Countryld 2
CountryName France
Cityld 1
CityName Paris
CityTourDuration 410
Attraction
&cityTourAttraction

TourAttraction.Inser

&cityTourAttraetion.Update()

TourAttraction.Dele

CityTourAttractionCountryld

2

CityTourAttractionCountryName France
CityTourAttractionCityld 1
CityTourAttractionCityName Paris
CityTourAttractionDuration 150
CityTourAttractionld g
CityTourAttractionName Eiffel Tower
CityTourAttractionCountryld 2
CityTourAttractionCountryName France
CityTourAttractionCityld 1
CityTourAttractionCityName Paris
CityTourAttractionDuration 260

These other operations will not be allowed. And this may seem

confusing at first.

&cityTour CityTourld 4
Travel Agency Y
CityTourName Basic Paris
Countryld 2
CIty Tour CountryName France
Cityld
L 3 CityName Paris
CityTourDuration 410
Attraction |
CountryId [2] = l
Country Name France
CityTourAttractionld
CityId 1A
;‘ CityTourAttractionName Louvre Museum
City Name Paris CityTourAttractionCountryld
CityTourAttractionCountryName France
| Durati N P
R a0 CityTourAttractionCityld
CityTourAttractionCityName Paris
Attraction CityTourAttractionDuration 50
Attraction Id Attraction Name ~ Countryld CountryName Cityld City Name (min) l
%} 1 [Eiffel Tower 2 France 1 Paris (210 | CityTourAttraction!d
= CityTourAttractionName Eiffel Tower
%) 2 [LouvreMuseum 2 France 1 Paris [20 |
CityTourAttractionCountryld 2
o] & 0 0 (o]
—— CityTourAttractionCountryName France
ol @ 0 0 0
‘ @ \7J CityTourAttractionCityld
CityTourAttractionCityName Paris
CityTourAttractionDuration 260
&cityTourUpdate() > i

But just as when you want to insert a new line through the CityTour
transaction screen you must first instantiate the header, then insert
the line and finally select the global Confirm, the same will happen
with the Business Components. To work with their lines, for
example by adding one, you will have to work with the header and
its lines, adding the line and then doing the desired operation on
everything, that is, on the transaction's BC variable.

Insert a line

= % Business Components

=i| City Tour
=4| City Tour.Altraction

. CityTourld

&cityTour.Load(2) :
CityTourName Paris at night
Countryld 2
CountryName France
Cityld
CityName Paris
CityTourDuration 380
Attraction

&attraction = new()

&attraction CityTourAttractionld = 5

&attraction.CityTourAttractionDuration = 120

&cityTour.Attraction.add(&attraction) [—_ —

&cityTour.Update()

CityTourAttractionld

CityTourAttractionName

Eiffel Tower

CityTourAttractionCountryld

2

CityTourAttractionCountryName

France

CityTourAttractionCityld

CityTourAttractionCityName

CityTourAttractionDuration

|

CityTourAttractionld

CityTourAttractionName

Notre Dame

CityTourAttractionCountryld

CityTourAttractionCountryName

France

CityTourAttractionCityld

CityTourAttractionCityName

CityTourAttractionDuration

So, to insert a new attraction for the city tour 2, you will need a
&cityTour variable of the Business Component data type of the CityTour
transaction. After applying the Load operation, we obtain the variable
loaded with the data from the database: in this case, the header and its

single line.

Then, as we will need to add a new line, we define an &attraction
variable of the Business Component data type corresponding to the
lines. After loading the values of its elements, we only have to add this
structure to the collection of lines. This is done with the add method

applied to the Attraction collection, no less.

Once the information is as we want it in the &cityTour variable, we
perform the Update operation on it, because the CityTour of ID 2
already existed, and we just want to modify it by adding the line. This

operation will be the one that actually inserts the line into the database.

Insert many lines

parm(in:&Attracionld);

* AddToCityTour X A

l:l Layout| Rules ‘ Conditions | Variables

w

<

/*The attraction received by parameter will be inserted in all the City tours with the same
country and city of the attraction */

> [

where CountryId = find(Countryld, AttractionId = &AttracionId)
where CityIld = find(CityId, AttractionId = &AttracionId)

1
2
3
4= for each CityTour
5
o
8 &cityTour.Load(CityTourId)

10 &attraction = new()

11 &attraction.CityTourAttractionId = &AttracionId
12 &attraction.CityTourAttractionDuration = 120
13

14 //Add the attraction to the City Tour lines

15 &cityTour.Attraction.Add(&attraction)

16

17 If &cityTour.Update()

18 commit

9 endif

20:-endfor

21 v

Looking at the procedure implemented, you'll understand
everything.
The attraction ID is received in the variable &Attractionld.

We are iterating in the For Each command for all city tours in the
country and city of the attraction received. Here it is clear why the
procedure has to be called after the attraction has been inserted in
the Attraction table: otherwise, you will not find its country and city
to use this filter.

&cityTour is a variable of the CityTour Business Component data
type. It is loaded from the city tour ID found in the For Each
command. You just have to add the line with the attraction.

To do so, define a variable of the Business Component data type
corresponding to the lines. Create new memory space for this
variable, and assign the storable elements: this is the attraction ID
and the duration of the visit.

And then you just have to add that line to the CityTour line
collection.

Finally, perform the Update operation that will return True if it was
successful, and in that case select commit.

Then it goes on to the next iteration.

Delete many lines

Travel Agency

Attractions =2l (2 e

Id Name Country Name City Name Category Name

Rio de Janeiro UPDATE DELETE
Paris) UPDATE DELETE
Beijing T UPDATE DELETE
Paris UPDATE DELETE

Paris Tou t UPDATE DELETE

Paris UPDATE DELETE

Now let's look at how to remove lines through the Business
Component.

The Work with Attractions contains the Notre Dame cathedral that
was previously inserted. If you go to the city tours, you'll see that
there are two in Paris that contain it: this one and this one. So, what
we want now is to be able to delete the attraction. Normally this
would not be allowed because of the referential integrity check -to
confirm that there are no city tours that contain this attraction- to
allow its deletion. So, when pressing Delete, we want to first delete
all those lines of city tours where the attraction is located, and then
go on to effectively delete the attraction.

I confirm, and we can see now that it was deleted from this city tour,
and also from the one we had seen before. The question is how to
implement it.

Delete many lines

m Attraction X

Structure ‘ © Web Form |:| Events | Variables ‘ Partemsl

=
~

AttractionId = &AttractionId if not &AttractionId.IsEmpty();
noaccept (AttractionId);
noprompt (AttractionId);

10 CountryId = &Insert_CountryId if &fMode = TrnMode.Insert and not &Insert_CountryId.IsEmpty();
11l noaccept(CountryId) if &Mode = TrnMode.Insert and not &Insert_CountryId.IsEmpty();

120 CityId = &Insert CityId if &Mode = TrnMode.Insert and not &Insert CityId.IsEmpty();

13t noaccept(CityId) if &VYode = TrnMode.Insert and not &Insert_CityId.IsEmpty();

14 Categoryld = &Insert_Categoryld if &Yode = TrnMode.Insert and not &Insert_CategoryId.IsEmpty();
15E noaccept (CategoryIld) if &Wode = TrnMode.Insert and not &Insert CategoryId.IsEmpty();}

162 /* Generated by Work With Pattern [End] - Do not change */

18 = Error("The attraction name should not be empty")
if AttractionName.IsEmpty();

5 W0

AddToCityTour(AttractionId)
on AfterInsert;

DeleteFromCityTours(AttractionId)
If Delete
on BeforeValidate;

(SRS R I R
B T I

From the Attraction transaction, in Delete mode. We want to
delete the attraction and before the data is validated, that is,
before the referential integrity checks are made, we call a
procedure, passing it the attraction identifier; that procedure is
the one that will be in charge of deleting all the lines of city tours
that contain it.

How do we do this?

To delete a line using the transaction you have to first load the city
tour, which will be in Update mode, then delete the line and finally
press Confirm so that the deletion is actually carried out in the
database. It will be similar here.

11

Delete aline

= % Business Components

=i| City Tour
=4| City Tour.Altraction

CityTourld

&cityTour.Load(2)

CityTourName Paris at night

Countryld 2

CountryName France

Cityld 1

CityName Paris

CityTourDuration 380

Attraction

CityTourAttractionld

CityTourAttractionName

Eiffel Towe

CityTourAttractionCountryld

2

CityTourAttractionCountryName

France

CityTourAttractionCityld

CityTourAttractionCityName

CityTourAttractionDuration

|

&cityTour.Attraction.RemoveByKey(5) CityTourAttractionid

CityTourAttractionName

&cityTour.Update()

Notre Dame

CityTourAttractionCountryld

2

CityTourAttractionCountryName

France

CityTourAttractionCityld

i CityTourAttractionCityName

CityTourAttractionDuration

To delete the Notre Dame cathedral from the city tour 2, in a
variable of the CityTour Business Component data type we load the
structure using the Load method, and then we delete the line from
the Attraction collection. How? With the RemoveByKey method. As
its name indicates, this method will search the collection for the
item corresponding to the indicated key value. In this case, that of
ID 5, which is from the Notre Dame cathedral. This deletion has
been done only in memory. Now it has to be impacted on the
database. To do so, you have to update the city tour, and that's why
the Update method is used. Of course, Save() could have been used
as well. All this is equivalent to having pressed the Confirm button
on the transaction.

12

Delete many lines

parm{ in: &AttractionId);

,» DeleteFromCityTours X N B Aursction* X v
. B Structure | = Web Form I:l Events ‘ Varidhlesl Patterns ‘
l:l Layout | Rules ‘ Conditions | Variables :
14 Categoryld = &Insert_CategoryId if &dode = TrnMode.Insert ai B
| - 155 noaccept(CategoryId) if &vode = TrnMode.Insert and not &Ins B
16 /* Generated by Work With Pattern [End] - Do not change */ ~—{
1@ For each CityTour.Attraction B 17
2 where CityTourAttractionId = &attractionId =] 18 Error("The attraction name should not be empty™)
3 19 if AttractionName.IsEmpty();
o 20
4 &c;tyho.g.Load(mtyTourId) 215 AddToCityTour (AttractionId)
5 &cityTour.Attraction.RemoveByKey (&AttractionId) 22 on AfterInsert;
6 22
7 if &cityTour.Update() E% Delet;:rgmiityTaurS(Attra(tiunld)
a . 23 lelete
= . commit 26 on BeforeValidate; o
9 endif oo
10 < >
1litendfor
12
19 e

If we now go to see how the procedure is implemented in
GeneXus: the variable &Attractionld receives the attraction
identifier to be deleted. A For Each command is used to search in
the city tour lines for one corresponding to that attraction ID. If it
finds it, in a city tour variable of the Business Component data
type corresponding to the transaction we load the CityTourld
corresponding to that line, and then apply the RemoveByKey
method to the collection of attractions of that city tour to delete
that of the attraction ID received by parameter.

Then we perform the Update; if it was successful, we commit.

In this way we make sure that we have deleted all the city tour
lines that had that attraction among their data. Then when the
execution of this procedure is finished, the control returns here,
the validation of the corresponding attraction is made -now it will
not have any related data-, and it is deleted without giving any
kind of integrity failure.

Update a line

Travel Agency

City Tour
Tou
-
Countryld 1%}
Country Neme Gountry Name
citysd 1B

Gity Name Paris

Total Duration

Attraction

Attraction Id Attraction Name Countryld Country Name

Eiffel Tower

=

Hotrearmme Cothedra: 2 Fronee

EEREE

Cityld City Name

+ Paris

(min)

This is the last case to be studied, which is how we update lines of
a transaction through the Business Component.

If we did it through the transaction in this case we would edit the
Tourld 2. Suppose we are interested in changing the duration of
the visit to the Eiffel Tower from 260 minutes to 200, and once we
do this all that remains is to confirm, so that the update can take
place.

We will have to do something like that through the Business
Component: load it, modify the line and update.

14

Update a line

= % Business Components

=i| City Tour
=4| City Tour.Altraction

Louvre Museum

2

France

50

|

Eiffel Tower

France

Paris

. CityTourld 2
&cityTour.Load(2) - -
CityTourName Basic Paris
Countryld 2
CountryName France
Cityld
CityName Paris
CityTourDuration 350
Attraction City’
CityTourAttractionName
CityTourAttractionCountryld
CityTourAttractionCountryName
CityTourAttractionCityld
CityTourAttractionCityName
CityTourAttractionDuration
&attraction = &cityTour.Attraction.GetByKey(3) iyl
. . X . CityTourAttractionName
&attraction .CityTourAttractionDuration = 200 T R ————
CityTourAttractionCountryName
&CityTour.Update() [—_‘_ _'_1 CityTourAttractionCityld
[;‘ — ‘7 CityTourAttractionCityName
l- 7:71 CityTourAttractionDuration

200

We then load the &cityTour variable with the city tour of ID 2.

We must access the item in the collection that corresponds to
attraction 3. To this end, the GetByKey method, is used. When
applied to the Attraction collection, that is, to the transaction lines,
it will return a direct reference to that memory position. Therefore
it is assigned to the &attraction variable of the Business
Component data type corresponding to the lines. In this way, the
&attraction variable will not be a copy of that line, but will be
exactly that line.

Now the only thing left to do is to change the
CityTourAttractionDuration element of that variable, and this will
have a direct effect on the &cityTour variable.

This has to be impacted in the database, and for this purpose we
perform the Business Component Update operation. Note that, as
a consequence, not only is the record corresponding to that line
updated in the database, but the &cityTour variable is also
updated, and the CityTourDuration element corresponding to a
formula in the transaction header that added up the visiting times
of the lines is also refreshed in the variable.

15

Update many lines

Travel Agency
< ATTRACTIONS
Eiffel Tower

Genersl Trip Supplier City Tour
" Modify duration

1 Duration Total Duration
200 200

Let's now see how to implement the modification of lines through
Business Components in the application.

Positioned on Work With Attractions, if you edit a certain
attraction, for example the Eiffel Tower, and select the tab that
shows all the city tours in which that attraction is located, you'll
see that it shows, among other data, the duration in minutes of
the visit to that attraction in each of the city tours.

We wanted to make it possible to change that duration from here,
by adding or subtracting minutes in all the city tours it is on. So,
let's say we want to add 10 minutes to each one. This screen is
shown to the user where he/she indicates that he/she wants to
add 10 minutes and see that this addition has been made.

What was done in the background? Each of these two city tours
was accessed, starting with the first one, accessing the line
corresponding to this attraction and adding 10 minutes to the
estimated time. And the same thing was done for this one. That is,
one line of each of these two city tours had to be modified.

16

Update many lines

Attraction* X [CityTour X

2 Work With Pattern Instance
Transaction (Attraction)
[&] Level (Attraction)
{ DescriptionAttribute (AttractionName)
[5 Selection (Attractions)
[5 View (Attraction Information)
@@ Parameters
@ Attractionld
A Fixed Data

* DeleteFromCityTows X [WorkWithAttraction X

[=] Attributeg Editing Custom Code

&3 Aurec] " AskiinutegDiff . popup(&CityTourAttractionld)

[7) Tabs Refresh
51 Tab (Gen
[Tab (City

@@ Param|
@ city
Transa
P~ mode:
[=] Attrib
& city
& city
& Co
& col
& ciyy
& ity

Cancel

& CityTourAttractionDuration
@ CityTourDuration
P> Actions
P> Action (ModifyDuration)
@@ Parameters
@ &CityTourAttractionld

v
‘i[¥ | Filter i

action: Action (ModifyDuration)

Name ModifyDuration
Caption Modify duration
GXObject (none)
Condition
Button Class

Grid

In Grid False

Muiti Row Selection False

Image (none)

Disabled Image (none)

Disabled Class

Tooltip

In Grid Class

Column Class

Call Type Auto

Custom

If you want to see how to implement it in GeneXus, in the Work
with Attraction we added an action, ModifyDuration, to the tab
corresponding to the city tours of the attraction. Its code is the
invocation to the web panel of that name, passing it the attraction
identifier, and when this web panel is finished running, a refresh is
done to show in the grid the refreshed data.

17

Update many lines

I:l Rules ‘ Events ‘ Conditions ‘ Variables

parm{ in: &attractionId, in: &minutesToUpd);

[v

g M7 ¥ ModifyMinsToCityTours X
Minutes to add or subtract &mig&

[:::::]ijouthuhs‘Condmons Variables

‘ v

for each CityTour.Attraction
where CityTourAttractionId = &attractionld

= I izl
_éjlﬂil &cityTour.Load(CityTourId)

Cancel

Ok &attraction = &cityTour.Attraction.GetByKey(&attractionId)
&cityTour.Update()
commit

endfor

'

R e R I T

<

Web Form | Rules l:l Conditions | Variables

ok

h ‘

W W N

Event 'ok’"

ModifyMinsTo[CiItyTour‘;(&attractionId, &mins)

Return
Endevent

&attraction.CityTourAttractionDuration = &attraction.CityTourAttractionDuration + &minutesToUpd

> [|

Let's see that web panel, which is the one that asks the user in this
variable to change the number of minutes and what it does is invoke a
procedure that actually changes the corresponding data. The
procedure needs to receive the attraction ID and the minutes to add or
subtract to that attraction in the various city tours it is on.

Then let's see how to schedule that procedure.

You can see it receives the information in these two variables, and in a
For Each command it runs through the attractions of the city tours,
filtering by the attraction received by parameter. Then, for each of the
records it finds, what it does is load the city tour in question in the
&cityTour business component variable; in the &attraction variable of
the type CityTour.Attraction -that is, the business component
corresponding to the lines- the item of the Attraction collection
corresponding to the &Attractionld key is obtained. Then the duration
is changed: the CityTourAttractionDuration element for that item,
adding the number of minutes received by parameter to the value it
had. Next, an Update is performed and committed.

18

\tt)

Summary
Insert a line Delete a line Update a line

&BC.Load(PKAttribute) &BC.Load(PKAttribute) &BC.Load(PKAttribute)

&lineBC = new() &BC.Lines.RemoveByKey(PKLineAtt) &lineBC = &BC.Lines.GetByKey(PKLineA
&lineBC.LineAtt, = ...

&lineBC.PKLineAtt = ... &BCYpdatet) &lineBC.LineAtt, = ...

&lineBC.LineAtt, = ...

&BC.Update()

&lineBC.LineAtt, = ...

&BC.Lines.Add(&lineBC)

&BC.Update()

Here is an overview of what has been seen regarding how to insert,
delete and change a line in a two-level Business Component.

In all cases the operation used is Update, since it was assumed that
the header already existed.

So, as a first step, we always load the business component variable
we want to work on. For inserting a line, a variable of the business
component type of the lines is created; new memory space is
reserved; a value is assigned to all the elements of the line
corresponding to attributes of the table to which we want to give a
value -those not assigned will be null or empty- and then the line is
added to the collection of lines. This addition is also for the sake of
reference, so we must be very careful to use the new() to create
new memory before working with each line.

The RemoveByKey method is available for the deletion, which
receives by parameter the identifier of the line to be deleted.

And finally, to be able to modify some attribute or attributes of a
line, we have the GetByKey method of the line collection, which
also receives by parameter the ID of the line you want to obtain.
This method returns a reference to the business component
corresponding to that line, so we must assign the method to a
variable of that type. Then, when changing the variable we will
already be changing that item in the collection.

19

Insert a new header + lines

&cityTour = new()

&cityTour.CityTourld = 2

&cityTour.CityTourName = ‘Paris at night’

&cityTour. Countryld =2
&cityTour.Cityld = 1

&attraction = new()

&attraction.CityTourAttractionDuration = 260
&cityTour.Attraction.add(&attraction)

&attraction = new()

= % Business Components

CityTourld 2 = CityTour
CityTourName Paris at night = C\tyTourAt[raction
Countryld 2

CountryName France

Cityld
CityName Paris
CityTourDuration 380
Attraction City
CityTourAttractionName Eiffel Tower
CityTourAttractionCountryld 2
&attraction.CityTourAttractionld = find(Attractionld, AttractionName = “Eiffel Tower”) ClECIATEEENCIGEEGD || [Fae:
CityTourAttractionCityld
CityTourAttractionCityName Paris
CityTourAttractionDuration 260
|
&attraction.City TourAttractionld = find(Attractionld, AttractionName = “Notre Dame”) Eiboudtactionid
CityTourAttractionName Notre Dame

&attraction.CityTourAttractionDuration = 120

&cityTour.Attraction.add(&attraction)

&cityTour.Insert()

CityTourAttractionCountryld

CityTourAttractionCountryName

France

CityTourAttractionCityld

[_ . _ CityTourAttractionCityName

Paris

CityTourAttractionDuration

To insert a new header and its lines, for example, the city tour 2,
assuming it did not exist, we start by defining the BC variable and
assigning it new memory.

Then we assign values for all the elements that correspond to non-
inferred header attributes or formulas.

Then we create a new memory space for an &attraction variable of
the Business Component type of the lines. We assign the values for
the non-inferred attributes and add that variable to the collection
of the lines of the global Business Component.

We do the same to enter a second line. Note that here it is
mandatory to reserve new memory space, because otherwise,
when making the assignments you will be overwriting the previous
line.

We add the new variable to the collection of Attractions of the BC
and finally we execute the Insert operation, so that the header and
the two lines are inserted in the database.

If there were no errors, the variable will be loaded with all the data,
the ones we entered and the inferred data and formula.

20

GeneXus’

training.genexus.com
wiki.genexus.com

