

Test coverage helps to monitor the quality of testing, and assists testers to create tests

that cover areas that are missing or not validated yet. With a more structured

approach, an aim at 100% requirement coverage and effective testing methods, you

will not compromise on quality.

The benefits of this feature are:

(Identify code areas uncovered)

Test coverage helps you unearth areas of a program that have not been covered by a

set of test cases. It helps make your application more robust and error-free.

(Removes redundant test cases)

Test coverage is especially useful in identifying and removing test cases that don’t

make much sense in the current project. Your developers can report these cases to

remove them and make the overall code lighter.

(Smoother testing cycles)

You can prevent defect leakage using Test coverage analysis. Test coverage also

helps in Regression testing, test case prioritization, test suite augmentation and test

suite minimization. All this leads to smoother yet efficient testing cycles.

https://www.simform.com/blog/regression-testing/

(Removes defects at early stages)

You can identify gaps in requirements, test cases and defects at early stages

of your product development life cycle. It saves you from a lot of headaches

later.

Test coverage is defined as a technique which determines

whether our test cases are actually covering the application

code and how much code is exercised when we run those test

cases.

Agile methodologies indicate that 80% of the logic should be

verified with unit tests, which are executed early in the

development cycle and have a low maintenance cost as can be

seen in the pyramid.

By default, in the GeneXus IDE, this feature comes disabled.

To use it, the first thing to do is to enable Code Coverage for

your environment.

To do this, set the Generate Code Coverage information

property in the application environment to 'Yes' and rebuild all

the KB.

Once the Rebuild All operation finishes, you will be able to

visualize the Coverage execution metric after each tests

execution.

In the CheckBalanceForTransferUnitTest test execution you

can visualize the Coverage percent in the Test Results panel.

In the Output GeneXus panel, you will find the path of the

Coverage data file for this execution. Coverage information is

always related to a particular execution.

The displayed coverage value is the percentage of total lines of

all the objects called by the tests aggregated in the execution

performed. This means that if you execute 2 tests that each

covers half of the lines of an object, the coverage displayed will

be 100% as both tests aggregated cover all the lines of the

tested object.

To open the coverage file and see the details of the Test

Coverage go to Test -> Code Coverage

Load the Coverage data execution file selecting “...” button and

then clicking Load you will see Coverage detail information.

On the left section, you can see every object involved in the

execution and its respective execution information when you

select them.

The Hit Count or Hits is the number of times the object has

been executed

The Time is the Elapsed Time

The Time with Children is also the Elapsed Time, adding the

elapsed time of the objects called by it

The Time (%) is the Total percentage of the elapsed time

related to the rest

The Coverage (%) is the Percentage of coverage, that means

the lines that were executed over total number of lines.

When an object from this list is selected, below a graph

indicating the call tree is shown. For example, in the current screenshot you

can see that CheckBalanceForTransfer is called by

CheckBalanceForTransferUnitTest.

On the right panel, the line codes with their respective trace information are

shown.

Note that it may have lines without information, that means that

during the execution these lines weren't executed.

In this example, we can see that the else condition was not

covered.

So, let’s understand how to use the Test coverage feature.

One of the main variables to monitor is the “Hit count” by which

we visualize the number of times the object has been

exercised. Also in the right detail, we can see the Hits for each

code line of the procedure. With both data, we can gather that

the procedure CheckBalanceForTransfer has 3 test cases, and

the three cases go into the “if” condition. In consequence, it

would be convenient to verify that redundant test cases are not

being executed in the "if" condition.

The most important metric is the Coverage percentage column,

we can see that 75% of the procedure

CheckBalanceForTransfer was exercised. That means that not

all code lines were tested, and we should add more test cases

to get full test coverage. As we can see in the right detail, the

else condition is not exercised by the test.

So, the developer should add a test case for this condition.

So, we go to the test cases defined in the data provider and we

will add the test cases for the else condition.

In this example, we will add one more test case with id 4 in

which I defined a negative transfer amount to execute the else

condition of the proc.

After running the unit test again, we will see the impact in the

Coverage metric of the procedure.

We can see in the Coverage (%) column that the procedure

has the 100% because all code lines were exercised? in this

unit test execution.

