GeneXus’

by Globant

GeneXus

Benefits of Test Coverage

GeneXus

Identify Remove
uncovered code redundant
areas test cases

Smoother Remove

cycles defects

Test coverage helps to monitor the quality of testing, and assists testers to create tests
that cover areas that are missing or not validated yet. With a more structured
approach, an aim at 100% requirement coverage and effective testing methods, you
will not compromise on quality.

The benefits of this feature are:

(Identify code areas uncovered)
Test coverage helps you unearth areas of a program that have not been covered by a
set of test cases. It helps make your application more robust and error-free.

(Removes redundant test cases)

Test coverage is especially useful in identifying and removing test cases that don’t
make much sense in the current project. Your developers can report these cases to
remove them and make the overall code lighter.

(Smoother testing cycles)

You can prevent defect leakage using Test coverage analysis. Test coverage also
helps in Regression testing, test case prioritization, test suite augmentation and test
suite minimization. All this leads to smoother yet efficient testing cycles.

https://www.simform.com/blog/regression-testing/

(Removes defects at early stages)

You can identify gaps in requirements, test cases and defects at early stages
of your product development life cycle. It saves you from a lot of headaches
later.

Test Coverage in GeneXus

GeneXus

Test coverage is defined as a technique which determines
whether our test cases are actually covering the application
code and how much code is exercised when we run those test
cases.

Agile methodologies indicate that 80% of the logic should be
verified with unit tests, which are executed early in the
development cycle and have a low maintenance cost as can be
seen in the pyramid.

By default, in the GeneXus IDE, this feature comes disabled.
To use it, the first thing to do is to enable Code Coverage for
your environment.

2] | Filter

Test

X

Generate Code Coverage informatic Yes

Run Tests After Build
Web
Full page screenshot
Base URL
Verify stops execution
Screenshot saving mode
HTML saving mode
Log Level
File Upload Base Path
Workflow

Business processes namespace

False

False
http://localhost/DemoEbanking.NetEnvironment/
True

OnError

OnError

Info

DemoEbankingCl

To do this, set the Generate Code Coverage information

property in the application environment to 'Yes' and rebuild all

the KB.

(=]

Start: 2022082123503 End: 235035 Flopsed: 556 me Unit test execution detoils

& N
" O

+ Autosc

Once the Rebuild All operation finishes, you will be able to
visualize the Coverage execution metric after each tests
execution.

In the CheckBalanceForTransferUnitTest test execution you
can visualize the Coverage percent in the Test Results panel.
In the Output GeneXus panel, you will find the path of the
Coverage data file for this execution. Coverage information is
always related to a particular execution.

The displayed coverage value is the percentage of total lines of
all the objects called by the tests aggregated in the execution
performed. This means that if you execute 2 tests that each
covers half of the lines of an object, the coverage displayed will
be 100% as both tests aggregated cover all the lines of the
tested object.

£ DemofbankingGXtest - GeneXus Beta - [=] >
File Edit View Layout Build Knowledge Manager Window Tools | Test|Help
NEPIXDBINDOA, #2505 » NetoesOLse S Run All Tests Cul+Shift-R
B B Oworer Fx .9 Code Covetage
B Tests Explover
thpan Stort: 202013 Unit test execution details
8 DemokbarkingEXmet ~ iZ Tests Results
. Tests ron: | € Tests CheckBolonceforT ronsterTest Coverage: 96%
] Mo Progare & Rebuild All Tests o~ Start. Wednesday, September 21, 2022 11 50.34 PM
) Soot Moddu Record Web Ul Test \D) \.a } Flapsed tima 355 ms.
@ B don esits.
SeumatartChatat T E
) o Expecied Obtained Info
@ Corramvad hatbern folse folse 1 BpectedsSuccess.
(D) FronibameOtmete true trua 2 Succnss
Frpoctadis
() FionGan @ toise folse 3 bxpectedisSuccess
() OpmeAPICommon
D) Teew
5 BrtibmmindBachoticn
59 CrockBatarceForTransier Tests
&%, Chmch St ancaf cx Traneos S Tmet.
£35 Creckdsancer rTramsiermestTes:
4 CracklssncefarTransierestTes:
o, ChmchSsancaForTransior Teet
£ OhachSatancef or Transter TestDsts
A ChmckSstancef or Traneme TentS0™
j CoTrashe Teeh St se axpecte
) EnseninBackaice
] DutsProvides o L3
NewTrancrTers
2'0“"‘ Show s GXtest g Xlas ﬂjlhm
2 Set up succeeded [Stmen
L it A S — Run Tests started =eeeemeees
[3) CordeinsundnC GXtest components versions => Extension: 4.17.11.21576, Module: 4.17.11.21385
o Cortafiapet Execution data received (:\Models \GXtestExecutionData. json. ..

T CheckBalsnce” o Transter

[CresnCore ENDED unit test Tests.CheckBalanceForTransfarTest, Result: OK. Elapsed: 355 ms
Boacesttwe 00 B ccoocomsoemessesees
B N Execution ended successfully
o DoTrnster Success: Run lests
o cutoe
[. ¥
< >

Info: Mock -> 3 sentences loaded from

*.\Tests.CheckBalanceforTransfer Test_nockData. gxtest’
STARTING unit test Tests.CheckBalanceForTransforTest...

Coverage data file for this execution was saved in ‘C:\Nodels\DemofbankingGXtest\NetCoreSQLServerddd\web\gxtestTraceFile 20220921 115034.gxd" .

To open the coverage file and see the details of the Test

Coverage go to Test -> Code Coverage

% CodeCovernge X
Please, type the name of a file to import or select it

C\Models\DemoEbankingCNCSharpModelweb\grtestTraceF de_20220905_113637 gxd Losd

Hit Count Time Time with Children Tis
inceF orTransfer 3 000000 3465390 00:0000
00:00:00 1276944 00:000

inceForTransferUntTest
Balancef or TransferUntTestData 00:00 000012256
LoadFionContext 3 000000 0028016

if > 0 and

df-:xi‘wlmff_?”“"-" = M CrockBalancof or T ransfor

20

Load the Coverage data execution file selecting “...” button and
then clicking Load you will see Coverage detail information.

On the left section, you can see every object involved in the
execution and its respective execution information when you
select them.

The Hit Count or Hits is the number of times the object has
been executed

The Time is the Elapsed Time

The Time with Children is also the Elapsed Time, adding the
elapsed time of the objects called by it

The Time (%) is the Total percentage of the elapsed time
related to the rest

The Coverage (%) is the Percentage of coverage, that means
the lines that were executed over total number of lines.

When an object from this list is selected, below a graph

indicating the call tree is shown. For example, in the current screenshot you
can see that CheckBalanceForTransfer is called by
CheckBalanceForTransferUnitTest.

On the right panel, the line codes with their respective trace information are
shown.

‘% CodeCovernge X
Please, type the name of a file to import or select it

C.\Models\DemoEbankingCHC SharpModelweb\gresiTracef de_20220905_113537 gxd

Object

Hit Count Time

000000 3465390 7246
00,0000 4782606 270
000000 0012256 0026
00:0000.0028016 0059

CheckBalanceForTransferUndTest 1
CheckBalanceForTransferUnaTestDa 1
LoadFionContext 3

000000 1276944
000000 0012256
00-:00-00 0028016

Time with Children Time (%)

Coverage (%)

Load
Time Hita &
if &P i > 0 and &T . >0
00:00.3462688 0003 96,82 nt.Load (sA)
190€ 0003 00.06; = &lsSuccess = LA int.AccountBalance »= sTransferAmount
ess = false
endif
ol # [

Note that it may have lines without information, that means that
during the execution these lines weren't executed.

In this example, we can see that the else condition was not

covered.

3 CodeCovernge X
Please, type the name of a file 10 import or select it

CA\Models\DemoE bankingChCSharpMode web\gresiTraceFie_20220905_113537 gxd Loed

Hit Count

LoadFionContext 3 00-0000.0028016 00:00-00 0028016 0053

Llu:-.ﬂi‘;::;,:l‘umlu' . > “GheckBi seForTranafer

So, let’s understand how to use the Test coverage feature.

One of the main variables to monitor is the “Hit count” by which
we visualize the number of times the object has been
exercised. Also in the right detail, we can see the Hits for each
code line of the procedure. With both data, we can gather that
the procedure CheckBalanceForTransfer has 3 test cases, and
the three cases go into the “if” condition. In consequence, it
would be convenient to verify that redundant test cases are not
being executed in the "if" condition.

The most important metric is the Coverage percentage column,
we can see that 75% of the procedure
CheckBalanceForTransfer was exercised. That means that not
all code lines were tested, and we should add more test cases
to get full test coverage. As we can see in the right detail, the
else condition is not exercised by the test.

So, the developer should add a test case for this condition.

$5 CheckBalanceForTransferUnitTestData X

Source

CheckBalanceForTransferUnitTestSDT
{
TestCaseld = "1’
4 AccountNumber = 5
TransferAmount = 200
ExpectedisSuccess = false

MsgisSuccess = "'
}
CheckBalanceForTransferUnitTestSDT
{
TestCaseId = "2
AccountNumber = 6
4 TransferAmount = 200
ExpectedisSuccess = true
1€ MsgisSuccess = "'
17:L}
3 CheckBalanceForTransferUnitTestSDT
{
TestCaseId = '3’
AccountNumber = 8
TransferAmount = 200
24 ExpectedisSuccess = false
25 MsgisSuccess = *'
26:-}
CheckBalanceForTransferUnitTestSDT
{
TestCaseld = "4’
AccountNumber = 6
TransferAmount = -200
ExpectedisSuccess = false
4 MsgisSuccess = "'
}

So, we go to the test cases defined in the data provider and we

o CheckBalanceForTransfer X

: Source

22 if &AccountNumber > @ and &TransferAmo
3 &Account. Load(&AccountNumber)
4 &isSucce = &A
else
6 &isSuccess = false
7 “endif

will add the test cases for the else condition.

In this example, we will add one more test case with id 4 in
which | defined a negative transfer amount to execute the else
condition of the proc.

\ccount.AccountBalance >= &Tr

‘5 CodeCovemge X

Please. type the name of a file 10 import or select it

Load

C\Models\DemoEbankingChCSharpModeliweb\gxest T raceF le_20220906_105501 gxd

Object
CheckBalanceF orTransber
CheckBalanceF orTransferUnitT est
CheckBalanceF orTransferUnitTestData
LoadFioriContext

HitCount Time

4

0000001476839
00:00.00.0892400
000000 0014646
000000 0045264

Time with Chiddren
00.00:00.1476839
00:00:00.2429149
00:00:00 0014646
0000:00 0045264

Coverage (%) Time S s
100
100 00:00.0000830 004 00.06! if &AC ntNumber > 0 and &Transferan t>0
100 0:00.1469984 0003 99.54 A Load (ber)
100 €024 41 = &A .AccountBalance >= iT
else
,,,,,,,,, = false
ndif

‘CheckBalanceForTransfer

After running the unit test again, we will see the impact in the
Coverage metric of the procedure.

We can see in the Coverage (%) column that the procedure
has the 100% because all code lines were exercised? in this

unit test execution.

GeneXus’

by Globant

training.genexus.com
wiki.genexus.com

