

P
ag

e1

Multi-instanced tasks and mapping of relevant data

In previous videos we have associated the tasks in the Travel Agency’s ticket reservation

diagram to GeneXus objects, converting the process model in a functional application.

We will continue to do the same with the reservation validation diagram, a subprocess of the

ticket reservation process.

If we examine the ValidateReservation diagram, we can see that the first task will be to

contact the airlines.

P
ag

e2

A particular feature of this task is that it will be executed a certain number of times because

several airlines have to be contacted. This may also be performed at the same time by

different users.

We open its properties and see that the Loop type property is set to Multi-Instance, the

Ordering property is set to Parallel, the Expression type property is set to Rule, and the

Expression rule property has the value 10.

This means that the task will be repeated exactly 10 times in parallel, as it was

indicated in the modeling stage. In addition, since the Flow Condition property is set to All,

the ContactAirlines task will be finished only after the 10 instances have been executed.

However, if we examine the task in more detail with the travel agency’s staff, we realize that

the number of times that this task has to be executed depends on the number of airlines that

the Agency currently works with. In addition, this number can vary with time.

To find out the number of airlines that the agency has registered, we can use a procedure

that runs through the table of the travel agency airlines and returns the number of registered

airlines.

To implement this, we change the Expression type property to Procedure and in the

Expression procedure property we select the LoopAirlines procedure.

We open the procedure source and see that it has a For Each command that runs through

the Airlines table and counts the number of registered airlines.

P
ag

e3

In addition, it loads the airline identifiers in an array, which was set as a relevant data item

of the ValidateReservation diagram.

This relevant data item is accessed from the procedure using methods from the Workflow

engine API. We will see this in more detail in another video.

As we’ve mentioned before, the number of airlines determines the number of instances that

will be created of the ContactAirlines task, so this value is returned by the procedure to the

ContactAirlines task in the last parameter of the Parm rule.

In summary, to define a task with multiple instances, we assign the LoopType property with

the Multi-Instance value. To indicate the number of times that this task is instantiated, we

use the Expression type property set to Rule and assign the number in the Expression Rule

property. Or, we can also set the Expression Type property to Procedure and use a procedure

that returns the number of times that the task will be instantiated, as we’ve seen in this case.

Going back to the diagram, the ContactAirlines task will be associated with a GeneXus object

of webpanel type, which will be executed every time that the task is executed. Its name is

ContactAirline. This webpanel will allow selecting, for each airline, the most adequate flight

for the reservation.

P
ag

e4

Upon starting the webpanel, the running task instance will be internally associated with one

of the airlines, so that every time that a new task instance is started, a different airline from

those registered by the agency will be contacted.

The webpanel shows the reservation details and the flights that the selected airline has

available for the reservation date.

The agency’s employee will be able to select the flight that will be associated with the

reservation.

Let’s see it at runtime.

We right-click on the tab of the FlightTicketReservation diagram and select Run.

P
ag

e5

We run the TicketReservation task and enter a reservation for today, for customer 1, who is

called John Parker and wants to travel from Carrasco airport in Montevideo to Guarulhos

airport in Sao Paulo. We click on Confirm and close the screen.

We click on Send to send the task and see that four ContactAirlines pending tasks are

displayed.

The reason is that we have to contact 4 airlines, and one instance of the ContactAirlines task

has been created for each one of the airlines registered at the Agency.

P
ag

e6

Click on the first pending task opens a screen to contact the first airline. It has a flight

available for the date, origin and destination required for the reservation, so we select the

flight and click on Select Flight.

In this way, we assign a possible flight that meets the requirements of the reservation

requested.

P
ag

e7

We close the window and complete the task, so it is no longer displayed as a pending task in

the inbox. We run the next task and see that a different airline is assigned. This will happen

for every instance of the ContactAirlines task.

This is solved in the webpanel object, because based on the Airlines relevant data item (of

array type) that stores the airline identifiers, a different array element is obtained for each

instance of the ContactAirlines task every time that the webpanel is started.

In the following step of the reservation validation process, after contacting the airlines, the

CheckAvailability task is used to check that at least one flight has been found that meets

the reservation’s requirements.

P
ag

e8

We open the CheckReservationFlights procedure and see that the source has a For Each

command that runs through the reservation details table and checks that at least one flight

has been selected for the reservation. If a flight has been selected, it assigns the True value

to the &ReservationAvailable variable.

This variable is returned as the last parameter of the procedure's Parm rule.

If we give this variable the same name as that of a relevant data item, the workflow engine

will automatically load the relevant data item with the variable value.

In procedure objects, mapping values between the relevant data and variables

included in the Parm rule is valid for both input and output variables. On the other

hand, in webpanel objects the mapping of values is only valid for input variables.

So, we open the ValidateReservation diagram, select the RelevantData tab and create the

relevant data item called &ReservationAvailable of boolean type, and clear the

“IsParameter” check box because this data is not a parameter of the diagram object.

P
ag

e9

Lastly, we associate the CheckReservationFlights procedure with the CheckAvailability

batch task and map the relevant data ReservationId and ReservationAvailable.

In the diagram, once the procedure sets whether the reservation is available or not, the

inclusive gateway “Are the tickets available?” should check the value of the relevant data

item we loaded.

To do so, we double-click on the outbound connector on the right side of the inclusive

Gateway and type &ReservationAvailable=False. In the Text property we type “No tickets

available”.

P
ag

e1
0

We do the same with the two connectors coming down from the inclusive Gateway, assigning

them the condition &ReservationAvailable=True, and in the Text property: “Tickets

available”.

In the condition expressions of a Gateway we can include relevant data, constants

(such as the True value in this case), enumerated domain values and attributes of

the extended table of transactions associated with the diagram.

Thanks to the definitions we’ve made, if there are flights available for the reservation, the

flow will move down from the Gateway. If there are no flights for the reservation, it will

move to the right, ending in the Error End Event called “No tickets available”.

This type of event that ends with an error allows us to end the reservation validation

subprocess and send the error notification to the main ticket reservation process.

If we look at the main process, we can see that it also has the symbol of an intermediate

error event with the same tag “No tickets available”, which is connected to an interactive

task that informs the customer about the problem.

P
ag

e1
1

The error intermediate event is of “catch” type, whereas the subprocess error end event is of

“throw” type.

In this way, from the main process we can find the reason why the subprocess ended and

take the corresponding action.

In the next video we will continue to work with the reservation validation subprocess, using

the interactive tasks “Add customer information required for traveling” and “Evaluate

Customer” that will be run at the same time.

