
Subtypes

Multiple References and Specialization



Review

In the previous video, we saw the need to define groups of subtypes, since a
transaction had a double reference to the same actor of reality.

This was the case with the Flight transaction, which had a departure and an
arrival airport for each flight. We could not include the same attribute,
AirportId, in the transaction structure twice, as GeneXus showed an error for
adding a duplicate attribute name. For that reason, we decided to define two
groups of subtypes: FlightDepartureAirport to identify the departure airport,
and FlightArrivalAirport to identify the arrival airport.

Since we wanted to infer the country and city of each airport, in each group
we also defined subtypes of the attributes corresponding to country and city,
as well as the name of the airport.

Therefore, when we name FlightDepartureCountryName in the Flight
transaction, we know that it will be a CountryName inferred through the
departure airport: FlightDepartureAirportId. These subtypes have been
defined within the same group and therefore the association and relationship
between them has been established.
And when we name FlightArrivalCountryName in the Flight transaction, we
know that it will be inferred through the FlightArrivalAirporId attribute.
That is to say, there is no ambiguity. There are two completely different ways
to get to Country from Flight.

2



Review

Another option was to leave the AirportId name attribute for the role of the
departure airport and define a group of subtypes to identify the arrival airport;

3



Review

or else leave the attribute named AirportId for the role of the arrival airport
and define a group of subtypes to identify the departure airport.
In both options, the data model will reflect the same relationships as in the
previous solution.

4



Multiple references

In the previous video we then saw the case of multiple references from one
table to another directly related to it.
However, these references don't have to be direct.

From one table there can be two paths to another, as it is an indirect
relationship, so subtypes will be needed to differentiate them.

5



New Transaction: TouristGuide

Suppose we have to add a transaction to record the information of the tour
guides. Each guide has a specific nationality, and for that reason we have added
the CountryId attribute to its transaction structure.

6



New Transaction: TouristGuide

If we look at the table diagram, from the Attraction transaction we can infer
the CountryName corresponding to that attraction, since it is in its extended
table. Likewise, from TourGuide we can also infer its own CountryName, that
is, the guide's country.

7



TouristGuide: Multiple references

If we now link the Attraction and TourGuide entities by adding to the first one the
attribute identifying the guide, TourGuideId, to indicate that a tourist attraction
has only one guide assigned to it, how are the tables now related?

TourGuideId will be a foreign key in Attraction to the TourGuide table, so the
relationship will be marked with the sky blue arrow. That may lead us to think that
from Attraction there are now two ways to infer CountryName, which means that
there is an ambiguity.

In other words, since GeneXus has the CountryName attribute in Attraction,
where does it infer it from? From the attraction city or the attraction tour guide?
If both values were the same, it wouldn't matter, but in this case they don't have
to match. The country where the attraction is located doesn't have to match the
tour guide's home country.

In order to differentiate both CountryName roles, we will need to use subtypes.

But in this case we will not only need them to differentiate the roles.

8



TouristGuide: Multiple references

Let's look at the table diagram after adding the TourGuideId attribute in the
Attraction transaction: the relationship between Attraction and CountryCity
disappears, as CountryId is no longer a foreign key in Attraction. Note that it is
no longer in the table; that is, it will be an inferred attribute. But, inferred from
what? From TourGuideId!

Remember that GeneXus first normalizes the tables. That is, based on the
attribute names, together with the identifiers, it determines which attribute is
placed in each table and the relationships between them. As TourGuideId is
shown in Attraction that is the TourGuide identifier and at the same time
CountryId is shown in TourGuide the Country identifier it understands that
given a TourGuideId in Attraction the CountryName is inferred from it, going
through the TourGuide intermediate table.

Therefore with this transaction design we indicate which is the country of
the attraction, because the CountryName will be that of the tour guide.
We have no choice but to use subtypes in order to make Attraction have its
own country, independently from the country of the tour guide.

9



TouristGuide: Multiple references

We will create a group of subtypes to represent the country and city of the
attraction, since it is Attraction where the problem occurs.
Note that now GeneXus correctly represents the relationships in the table
diagram; in addition, the CountryName attribute is now inferred from
TourGuideId without ambiguity. The attribute that represents the attraction
country and from which it is inferred will be the one called
AttractionCountryName, a subtype of CountryName that belongs to the group
AttractionCountryCity.

Also, note that this group has two primary attributes: AttractionCountryId and
AttractionCityId, which correspond to the primary key of the CountryCity table,
according to the supertypes indicated: {CountryId, CityId}.

This solution solves the problem, but we must take into account that if there
are other objects that already use the original attributes CountryId and
CountryName to search for the attraction country, we may have to modify
them in those objects and use the subtype attributes AttractionCountrId and
AttractionCountryName, respectively.

There are other possible solutions that will not be studied in this course.

10



Specialization

Now let's look at another case of use of subtypes, which we call specialization,
in which there is a transaction that records general information, and then there
are transactions with particular information, which are a specialization of that
other one.

11



Specialization

Suppose that the travel agency needs to handle specific information about the
customers to whom it sells tickets and tour packages (e.g. their taxpayer
number at the state tax office, if any), specific information about the
passengers (e.g. their passport number and validity) and also specific
information about the agency's employees, for whom it must record, for
example, their salary.

In other words, the travel agency will invoice customers, provide seat
reservations for passengers, and issue pay slips to employees.

12



Specialization

So, instead of just a Customer transaction, we could define a transaction called
Person that handles information that is common to all people (e.g., a name,
date of birth, address, phone number, etc.), and transactions that are Person's
specializations, because customers, passengers, and employees ARE people.

Each specialization will have its own specific data (Customer will have a
taxpayer number, Passenger will have a passport number and expiry date, and
Employee will have a salary).

13



Specialization

We want the customer ID to exactly match that of a person, to reflect that the
customer is a person. That is, if the person with ID 8 is called Ann Roberts, and
she was born on 05/05/1970, when entering her information as a customer, the
user needs to be able to type the ID 8 in the Customer transaction. Also, when
leaving the field the name Ann Roberts should be shown in order to enter the
taxpayer number in the CustomerTaxpayerId attribute.

14



Specialization

Likewise, if the Passenger transaction is executed, when the user types
the value 8 in PassengerId, we want Ann Roberts to be inferred in
PassengerName, and the user to be able to assign the passport number
and expiry date in the specific attributes (PassengerPassportNumber and
PassengerPassportExpirationDate).

15



Specialization

And for the employees as well.

16



Specialization

If we simply define as primary keys of Customer, Passenger and Employee,
the attributes CustomerId, PassengerId and EmployeeId respectively,
without relating them in any way to PersonId (such as CustomerName,
PassengerName and EmployeeName without relating them to
PersonName), we will not get what we are looking for. For GeneXus they
will be completely independent transactions.

To relate them, we are going to define groups of subtypes, to indicate that
customers, passengers and employees must be valid (i.e. previously
registered) persons.

We create a CustomerPerson group, where we define CustomerId and
CustomerName as subtypes of PersonId and PersonName, respectively.

Also, another one called PassengerPerson, where we define PassengerId
and PassengerName as subtypes of PersonId and PersonName,
respectively.

Lastly, a group called EmployeePerson, where we define EmployeeId and
EmployeeName as subtypes of PersonId and PersonName, respectively.

17



Specialization

By doing this, the attributes CustomerId, PassengerId and EmployeeId,
besides being the identifiers of the Customer, Passenger and Employee
tables, respectively and therefore, their primary keys will also be
foreign keys of the Person table. In this case, GeneXus will control the
consistency of the data.

18



Specialization

This means that when the user enters a value in the ID of any of the three
transactions (Customer, Passenger or Employee), a record with the same
ID value will be searched for in the Person table.

19



Specialization

Similarly, if you want to delete a person through the Person transaction, it will
be checked that there is no record in Customer where CustomerId matches
the PersonId you are trying to delete, or a record in Passenger where
PassengerId matches the PersonId to be deleted, or a record in Employee
where EmployeeId matches the PersonId to be deleted. If any of these three
records exist, you will not be allowed to delete the person.

20



Specialization

This design represents 1 to 1 relationships between the general table and the
one corresponding to each specialization, that is to say:
a person can only be registered once as a customer, because CustomerId is a
valid PersonId, and is also a primary key. Likewise, a person can be registered
only once as a passenger and only once as an employee.
A person can have all 3 roles, or be registered only as a person and have no
additional data as a client of the agency, as an employee or as a passenger.

In the CUSTOMER, PASSENGER and EMPLOYEE transactions, CustomerName,
PassengerName and EmployeeName will be inferred attributes, so they won't
be physically stored in the tables CUSTOMER, PASSENGER and EMPLOYEE,
respectively.

Remember that the diagrams created by GeneXus show 1 to 1
relationships, and the arrows only indicate foreign key relationships. That's why
we see the double arrow next to the specialized tables.

There are other cases of use of subtypes that will not be studied in this course.
If you are interested, you can look for information related to this topic in the
next level course.

21



training.genexus.com
wiki.genexus.com


