
………………………………………………………………………………………………………………………..……………………………………………………

Subtypes

An encompassing look

Subtypes allow us to indicate GeneXus how to associate various attribute names to
a single concept.

1



………………………………………………………………………………………………………………………..……………………………………………………

In previous courses, we have analyzed and studied different cases where we
defined groups of subtypes to resolve conflicts or ambiguities that arise in our
applications.

2



………………………………………………………………………………………………………………………..……………………………………………………

We started with the simplest example, where we had a double reference to the
same concept, but with different roles.

3



………………………………………………………………………………………………………………………..……………………………………………………

In this case, we were asked to be able to register both the departure airport and
the arrival airport of a certain flight:

4



………………………………………………………………………………………………………………………..……………………………………………………

Later on, we studied a case of multiple indirect references, since, given a table, we
had two paths to get to another one:

5



………………………………………………………………………………………………………………………..……………………………………………………

It was the case where we had to record information about tour guides, and there
were two paths to get to the CountryId attribute to identify their country.

6



………………………………………………………………………………………………………………………..……………………………………………………

In the same video, we saw a case of using subtypes to represent a specialization,
where one transaction recorded the data common to people, and other
transactions (specializations of the first one) recorded their particular information.

7



………………………………………………………………………………………………………………………..……………………………………………………

In this other video, we look even more closely at a case of indirect multiple
references, when we had to record the tours offered to the travel agency's clients
to visit the tourist attractions of a given city.

8



………………………………………………………………………………………………………………………..……………………………………………………

In this example, we thoroughly analyze the problem with its different solutions,
each with its advantages and disadvantages. Also, we highlight the importance of
studying each particular case and determining when and where to use subtypes as
necessary, and not arbitrarily.

9



………………………………………………………………………………………………………………………..……………………………………………………

We also presented a use case of recursive subtypes, where an entity had to be 
self-referenced.

10



………………………………………………………………………………………………………………………..……………………………………………………

This was the reality where we represented the information of the employees of
the travel agency, where each employee could be, in turn, the manager of one or
more other employees.

11



………………………………………………………………………………………………………………………..……………………………………………………

Now let's study one last example where we must avoid the referential
relationship.

Suppose we must model transactions for a reality in which we have companies and
services that they can purchase (such as, for example, an emergency healthcare
service).
In turn, companies have employees who may also have purchased services that
don't necessarily match those of the company they work for. We are interested in
recording these employee services because, for example, if many employees have
purchased a certain emergency healthcare service, an agreement can be sought
with that service to obtain a benefit.

12



………………………………………………………………………………………………………………………..……………………………………………………

In our reality, employees can only work in a company, but we don't want to
represent them as a strong entity, but as dependent on the company. Let's look at
these two proposed solutions, where one is correct and the other is not.

13



………………………………………………………………………………………………………………………..……………………………………………………

A) The first solution would be to create these two transactions and the following
group of subtypes:

14



………………………………………………………………………………………………………………………..……………………………………………………

B) The second solution would be to create these two transactions and the 
following group of subtypes:

15



………………………………………………………………………………………………………………………..……………………………………………………

A) is the correct solution and not B). 

16



………………………………………………………………………………………………………………………..……………………………………………………

If we look closely, in the Company transaction there are two parallel levels: Service
and Employee. This means that everything that is inferred from any of these levels
will correspond to the same company. However, we do not want the employee's
service to exist as a company service, since in our reality the employee may have
purchased services different from those of the company he or she works for.

17



………………………………………………………………………………………………………………………..……………………………………………………

In other words: when the user enters the employee services grid, we don't want to
check whether the entered service exists as a record in the table corresponding to
Company.Service.

18



………………………………………………………………………………………………………………………..……………………………………………………

Clearly, we need to define a group of subtypes because in the same transaction
GeneXus will not allow us to repeat the same attribute name. So, the question that
arises is: does it make any difference whether you define it on one level or the
other? The answer is no. We could define two groups of subtypes and solve the
problem, but, as we have already seen in previous videos, it is not good practice to
define more subtypes than strictly necessary. That’s because it is never exactly the
same to have the subtype than having the supertype, as will be made clear with
this example.

19



………………………………………………………………………………………………………………………..……………………………………………………

Therefore, to solve the problem it is enough to have only one group. Why, then, is
the correct solution A) and not B)? Because if GeneXus allowed us to repeat the
same attribute name, it would clearly find that in the table associated with the
level Company.Employee.EmployeeService, with primary key {CompanyId,
EmployeeId, ServiceId} the attributes {CompanyId, ServiceId} would form a foreign
key to the table corresponding to the level Company.Service (because its primary
key would be {CompanyId, ServiceId}).

20



………………………………………………………………………………………………………………………..……………………………………………………

But if we change the name (with a subtype) of ServiceId in the table in which this
attribute is part of a foreign key, for GeneXus this doesn’t delete its referential
role.

21



………………………………………………………………………………………………………………………..……………………………………………………

On the other hand, if the attribute to which we change the name (using a subtype)
is the one that plays the primary key role, then in the table in which the supertype
attribute appears, it does not establish the referential relation.

22



………………………………………………………………………………………………………………………..……………………………………………………

Both these more complex cases and the simpler ones are common in real-life
applications. It is up to the developer to analyze the pros and cons of the different
solutions to find the one that best suits each particular case, while keeping in mind
that subtypes are a compromise solution to solve problems and should be used
cautiously.

23



………………………………………………………………………………………………………………………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

24


