
Subroutines



In this video, we will see what subroutines are in GeneXus. We will see how they work and how they 
can be implemented, and we will examine what they can be useful for.

A subroutine is basically a block of code, which we can invoke as many times as we want, as long as it 
is within the same object.
In this way, we can execute the same block from several places of the object, or from the same place, 
but several times. The subroutine allows us to write that code only once, assign a name to it, and then 
simply invoke it by the given name.

Subroutines can be used in all objects that accept programming, except for Data Providers. They are 
as follows: Web Panels, Procedures, Panels, Transactions.

Let's see how it works with a simple example.



We will do it on an application that we are developing for a travel agency; among its transactions we 
have one called Category, to register the different categories, and another one called Attraction. In 
the latter, in addition to its own attributes, it has the CategoryId and CategoryName attributes of the 
Category transaction. 

Let's see one of the application's Web Panels, and examine its implementation.



second one will have Change2.

In the events section, we see the code assigned to these two events. Let's look at the first one. Two 
variables, cityname and categoryname, are declared and assigned the text Beijing and monument, 
respectively.
Then we have a category variable, of the Business Component Category type, which is told that the 
name of the category will be Tourist site. Subsequently, it will try to insert this new category in the 
Category table.
If the record was inserted correctly, the attraction table will be run through, and it will filter only the 
records in which CityName has the same value as the CityName variable and CategoryName has the 
same value as the CategoryName variable.
For these records, the attraction category will be updated, changing it to the one we have just 
entered, in this case Tourist Site.

The second button will do the same as the first one, but with different data. The name of the category 

be filtered.

If we look at the first and the second event, they have exactly the same code block.
In this case, we could declare that code in a single place, and simply call it from the event we want. 
Let's do it.



The Sub command will allow us to define a subroutine, and then we must assign a name to it. With 
endsub we mark where it ends.
Inside it we must enter the code that we will invoke later. We copy it, and paste it here.
We delete that block in the events, and call the subroutine instead. We do this by using the Do 
command, followed by the name.
With this implementation, the way it works will be exactly the same as before declaring the 
subroutine.

In this way, we manage to modularize our code, making it clearer and easier to read. Another 
advantage is that if we need to change something in this block, we do it only once and it is applied 
everywhere it is called. Also, we can reuse this code through the subroutine as many times as we 
want, as long as it is within this same object, in this case the Web Panel 
InsertCategoriesAndAttractions.

Now let's look at this other example, to understand a little more about how it works.



In our application, we have the Airline transaction to record the different airlines, with the following 
attributes.

In this procedure object, we have the following code in the source. 
Through this For each, the Airline table will be run through, filtering by the airline with ID 1, since this is 
the value that we assigned to this variable. 
We want to update the address of this record, using the AirlineAddress attribute.
Then we have a variable named nextId, to which we will assign the value of AirlineId plus one; in this 
case it will be two. Next, we call the ChangeName subroutine.
This subroutine runs a For each also on the Airline table, filtering by the record that has AirlineId equal 
to two.
If such a record is found, its name will be updated.

By the time the subroutine execution is finished, and we go back to the main For each, in which 
record will we be located? If here we have an attribute of the Airline transaction, for example this one 
(AirlineDiscountPercentage), and we assign it a value, to which record will it apply? To the record with 
ID one, which is where we were located before we called the subroutine? Or to the record with ID 
two? 



Let's see this by declaring three attributes in the layout, to show the ID, name and address of the 
airline.

And in the source, we added three Print Printblocks to see in which airline we are positioned at any 
given moment. We place one before calling the subroutine, one during subroutine execution, and 
another one immediately after leaving the subroutine. 

Let's try it.
We see that in the first print, before calling the subroutine, we are positioned in the airline with ID 1, 
already with the updated address.
The second print that is executed corresponds to the one inside the subroutine. We see that the 
record with ID two is printed on the screen, and already with the new updated name.
The third print is executed once we exit the subroutine. And we see that, at that moment, we are still 
positioned in the record with ID two, which is where we were inside the subroutine. And not in the 
record with ID one, which is where we were positioned before calling the subroutine. 
Therefore, if at this moment we update the AirlineDiscountPercentage attribute with one value, it will 
be done on the record with ID two.
It works in this way because the declared attributes will be global to the object. Therefore, if an 
attribute takes value in a certain section of an object, and subsequently a subroutine is called that also 
assigns a value to the same attribute, when returning from the invoked subroutine and querying the 

AirlineId
attribute.

Subroutines don't support sending parameters; therefore, to exchange data we use variables, which 
are global to the objects.



If we didn't want this behavior we have just seen, instead of using a subroutine, we could call 
a procedure, for example. In this case, using a parameter to send the variable by which we 
want to filter.

Now let's look at a third example.



In this case, we have the following procedure, which performs a For each that navigates the Category 
table, and a nested For each that will navigate the Attraction table. As we know, in this case, GeneXus 
will perform a Join by CategoryId, since every attraction will have an assigned category. And 
CategoryId
list.

Viewing the source of the procedure, we see that we implemented two PRINTS: one, 
implemented the name of the category, and the second, the name of the attraction.

If we run it, we see that the name of the category is printed, and inside it the attractions that have that 
category associated with it.
If we don't want this behavior, i.e. that the Join is not performed, but that the category is printed and 
then all the attractions are printed, regardless of which category they belong to... How can we 
implement it?
One option is to put this code inside a subroutine.

We can see that the entire Category table is run through, and then the entire Attraction table is run 
through, from the first to the last record, without applying any type of filter.

Thus, GeneXus no longer performs the automatic inference, and doesn't filter by CategoryId. There 
will be two independent navigations.

So far, we have seen different examples about the use and operation of subroutines.



Here is a short summary:

Subroutines

- They are blocks of code, which allow us to modularize the code. They can be invoked as many times 
as we want within the same object.
- They can be used in Web Panels, Procedures, Panels, Transactions, etc.
- They are defined through the SUB command and then invoked through the DO command.
- They don't support sending parameters; variables are used to exchange data.
- If an attribute has a value, when calling the subroutine it changes. When returning from the 
subroutine and querying the value, it will have the value that was assigned in it, since the attributes are 
global to the object.
- If the call is made from within a For each and the subroutine also has a For each command, they will 
not be nested; i.e., no inferences or filters will be made.

For more information on this topic, you can visit our Wiki.




