Compound data types

GeneXus

Now let's consider that the Travel Agency has requested a ranking of all the countries,
according to the number of tourist attractions they offer.



Consultas en GeneXus GeneXus’

New requirement...

List all the countries, ordered from highest to lowest by the number of attractions they have registered.

Countries Ranking

2 France 3
3 China 2
4 Egypt 1
1 Brazil 0

We need to obtain a list similar to this one, which shows all the countries,
ordered from highest to lowest by the number of attractions they have
registered.

As we can see, each line will correspond to a country, showing its
identifier, its name and the number of tourist attractions it has. The
problem here is that we have to sort this information according to this last
value, which is not in the database. It has to be calculated.



One option:
Name Type Descripﬁon Formula
=5 Country Country Country
¥ countryld Id Country Id
P CountryName Name Country Name
/& CountryAttractionsQty Numeric(4.0) Country Attractions Qty count(AttractionId)

=|city City City
¥ cityld Id City Id
© CityNAme Name City NAme

For each Country order (CountryAttractionsQty)
Print Countries
Endfor

How can this list be implemented?

One option, applying the concepts we already know, would be to define a
formula attribute at the level of the Country transaction structure, and
then run a For Each command, with Country as the base transaction,
ordering from highest to lowest by that calculated attribute.

This solution is completely valid, but it is also valid to solve a requirement
without the need to add new attributes to a transaction just to solve a
certain query.



GeneXus’

Simple data types

S

country France

Name

Fo
%;Z\

So, we are going to solve this requirement in another way, adding new
concepts that will be very useful for more complex cases. Let's start
talking about Structured Data Types.

So far, we have always used simple data types. We have defined attributes
and domains of Numeric, Character, Date, Image type, etc.

If, for example, we now want to store the identifier and name of a country
in variables, then we need two variables.

But we will see next that we can also use compound data types.



GeneXus’

Compound or Structured data types

(e
I 1
Q France
country

A compound data type can only be assigned to a variable, never
to an attribute..

A compound data type allows several data items to be stored together in a
single variable. To put it simply, it's like grouping several simple variables
together under one name.

A structured data type is created by means of a GeneXus object of this
type. The data type created can only then be assigned to a variable, never
to an attribute.



GeneXus object: Structured Data Type (SDT)

Structure *

Name Type Description Is Collection
&t SDTCountry SDTCountry LJ
°Id Numeric(4.0) Id |
* Name Character(20) Name Ol

we will then create an object of SDT type and name it SDTCountry. Note
that we place SDT before the word because a transaction and a structured
data type with the same name cannot exist within the same KB.

Remember that we already have the Country transaction.

For now, we only want to save the Identifier and the name of the countries
so we define those items, or those members in the structure:

« Id, of Numeric type

« and Name, of Character type.

For this definition we've just made, GeneXus created the data type
SDTCountry, so we can already start creating variables based on this data

type.

The question we now ask ourselves is how can we load values into a
structured variable?



Loading an SDT

1) Manual loading

&CountryItem.Id = 1

&CountryItem.Name "France"

2) Load inside a For each

For each Country
Where CountryName = "France"
&CountryItem.Id = CountryId
&CountryItem.Name = CountryName
print printblockl

Endfor

As a first example we will load the data from France, and we will do it
manually.

Note that by typing the variable &Countryltem, and pressing the period
key, we can already see the items that make up the data type.

We will then load the Id 1 that corresponds to France, and the name
“France.” This way we load the variable manually.

Another option would be through a For Each command by positioning
ourselves in the record corresponding to France, and then loading the
variable &Countryltem with the value of Countryld for the ID item, and
with the value of CountryName for the Name item.



Defining collections

Name Type Description Is Collection

=44 SDTCountry SDTCountry il

® CountryId Attribute:Countryld Country Id O

¢ CountryName Attribute:CountryName Country Name O

= E City City Collection SDT

= ¢t CityItem

* Cityld Attribute:CityId City Id O

¢ CityName Attribute:CityName City Name O

ons
Name Type Is Collection Description
Collection variable J(8]variables
i#[&] Standard Variables
¢ Countryltem SDTCountry O Country Item

Let's see now that when the structure to be created matches completely, or
partially, the structure of a transaction, we can drag this transaction into the
structure of the SDT without generating any kind of ambiguity, because
GeneXus can distinguish between the attributes of the transaction and the
items of an SDT, even if their names match.

. Remember that a structured data type can only be assigned to variables and
not to attributes.

Note also that the structure of an SDT can be very complex! For example,
each country has a collection of cities, and it is clear that the data types of the
SDT members are derived from the attributes.

What if we need to keep a collection of countries? How can it be done?

One is to define the SDT as a collection, and to do so we only need to check
this box that says IsCollection.

Thus, when saving the changes, GeneXus will create the SDTCountry data
type for the collection, and the SDTCountry.SDTCountryltem data type for the
collection item.

Another way is to leave our SDT as we have originally defined it and mark the
collection at the level of the defined variable.

In the next video, we will talk in detail about the collection variables.



GeneXus




