
CHALLENGE 2: 

In this challenge, we will start by importing the xpz of the resources provided to you. 

Among the elements to import, there is a CustomUser transaction that will have custom users 

who will be checked by GAM to verify their identities. We will have a CustomUserLoad 

procedure that will populate the CustomUser transaction with default users. The table 

associated with that transaction. There will be auxiliary SDTs (these are used to implement the 

Custom authentication procedure). In addition, domains and folders that are used for creating 

a more organized and centralized structure of the elements to be imported. 

 

Once the objects are imported, we create the auxiliary Custom authentication procedure. 

This procedure will be Main, with code that looks as follows. 

Before looking into it, we add the rules that have an input string of VarChar type, and an 

output string also of VarChar type. 

In the code, we need a Key variable of VarChar type that will be defined in the GAM for the 

Custom authentication type, which we will show later. 

Next, we have to use the auxiliary SDTs that were imported, for the different variables that are 

loaded. 

Then we have strings associated with the username and password—also VarChar—which are 

decrypted from the input string that is a JSON using the key, as established by GAM. 

Next, an SDT is loaded, and will have the output of the execution of this procedure. 

The JSON version of GAM for this case will be 2.0, but it also works with 1.0. It would only be 

necessary to adapt the example to this one. 

Lastly, the ValidUser subroutine is executed that will validate the input parameters which are 

UserLogin and UserPassword against the CustomUser table that we imported, comparing the 

fields, and also verifying that the user is active. If all conditions are met, all the user's data will 

be loaded into the output SDT that GAM will handle. Otherwise, if not all conditions are met, 

an error is returned in the Status provided by GAM. 

 

The next step is to create the Custom authentication type in the GAM web back office. To do 

so, we log in with the administrator user, go to settings, authentication types, and click on Add. 

We select the Custom type, and name it “Custom login.” The “only authentication” function 

will be enabled. The JSON version, as we said, is 2.0. Here we generate the key that we 

mentioned earlier, which we will introduce in the procedure created later on. The filename for 

this .NET case will be this dll (it begins with “a” because this is how Main procedures start in 

these versions of GeneXus). The Package will have the value “GeneXus.Program” (which is the 

namespace that would encompass the procedure class). The class that applies in this case is 

the same as the Filename but without “.dll.” 

We copy the key and confirm. 



In GeneXus, we paste the key in the Key variable, and the next step is to do a build so that all 

the changes are applied. 

 

Since we have the new CustomUser table, it is necessary to reorganize the database to create 

it. This process takes a few minutes, so we move quickly. 

 

After this process is completed, we have to load the users into the CustomUser table. For that, 

we use the delivered procedure, which can be run without building because the Build All has 

already been done before. 

 

Once this is finished, we can go to the application login where we have more than one type of 

authentication to choose from: the default one, and custom login which is the new one. 

We will use one of the loaded users (Mick) with a password from 1 to 6. 

Note that the login is successful, but after selecting to go to the GAM Backoffice it returns us 

as unauthorized. This happens because the user Mick does not have permissions to see the 

backoffice, but it is just a permissions issue. The challenge was completed. 

 


