
Database Update

Using Single-level Business Components (REVIEW)

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete()

2. Procedure: New, For each, Delete

Save()

InsertOrUpdate()

Database update

To update the database information using code, there are two possibilities:

Do so using the Business Component of the transaction, through its Insert,
Update or Delete methods (or with Save or even InsertOrUpdate instead of
Insert or Update), or do it exclusively within a procedure, through the New
command, For each command with direct assignment of the attributes to be
modified, and the Delete command within a For each to delete the record in
which you are positioned.

2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete()

2. Procedure: New, For each, Delete

Database update

The huge difference between these two alternatives is that while the first
one is strongly linked to the logic of the transaction, because the rules,
including the control of duplicates and referential integrity, are
triggered...

3

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

Insert, Update, Delete

1. Business Component: Insert(), Update(), Delete()

2. Procedure: New, For each, Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 1 1 100

Database update

...in the second one the update is independent of the transaction, so
no rule will be triggered, and the only control that will be performed
is the duplicate control: in this way, you could assign a non-existent
category, which the program will not check. However, the database
will check it and the execution will be interrupted with an error
screen in the user's browser.

So, let's continue to look into the first alternative, that of Business
Components.

4

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

Insert, Update, Delete

&attraction = new()

&attraction.AttractionId = 5
&attraction.AttractionName = "Christ the Redeemer"
&attraction.CountryId = find(CountryId, CountryName = "Brazil
&attraction.CityId = find(CityId, CityName
&attraction.CategoryId = find(CategoryId, CategoryName = "Monument

If &attraction.Insert()
Commit

endif

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

&attraction.Save()
if &attraction.Success()

Commit
endif

BC: Insert

To insert a new tourist attraction using the business component, it is
enough to:
• Create a variable of this type,
• Assign a new memory space to it (it is not essential but it is a good

practice to make sure that, no matter what has happened before,
the variable at this time will be completely new).

• Assign a value to all the elements of the Business Component
corresponding to attributes in the table:

• if the identifier is autonumbered, there is no need to assign
it a value: the database will do it when you insert it,

• if no value is assigned to any attribute in the table, it will
remain empty or null. This is not a problem in general,
except for the case in which the attribute is a foreign key
and does not admit nulls; there, if you try to insert it, you
will get a reference integrity failure error.

• Finally, after loading the Business Component structure, the only
thing left to do is to invoke the Insert method, and

• Commit if you want when the insertion is successful.

This is the equivalent to using the Save method; since in this case the
Business Component variable is in Insert mode, it will try to insert (and
not do an update).

5

Mode

Enum values

Insert Insert ‘INS’
Update Update ‘UPD’
Delete Delete ‘DLT’
Display Display ‘DSP’

Remember that among the standard variables of every transaction, we
will find the one named Mode. This variable contains at all times the
mode in which you are executing the transaction.
In order to handle its values at a high level, the GeneXus module
incorporates the TrnMode enumerated domain, which can take the 4
values: Insert, Update, Delete, and Display which indicates that the
information is being displayed but nothing will be done with it.

When the transaction is opened if you don't specify it to receive mode
and identifier as parameters it does so in Insert mode. That's why the
fields are empty. When you exit the identifier, a search is made for a
record with the value you left it in in this case 0 and since it can't be
found, the transaction remains in Insert mode. If there were rules
conditioned with If Insert they would be triggered. After saving. it
informs that the data has been inserted. Also, the form has been
emptied again, which means that the transaction has been left in Insert
mode again. As you will see, this will not happen when you insert
through the Business Component, which will remain in Update mode.
If you now choose an existing value in the database for the identifier,
for example 5 which is the one that has just been inserted, when you
leave the field the transaction brings its values loaded in the fields on
screen and automatically remains in Update mode. You can change
something, for example, remove the category, leaving it empty
(assuming that you accept nulls in that foreign key). After confirming
you are informed that the record was successfully updated, but also
you are positioned on the same record, in Update mode. Here, the
Business Component will behave in the same way.

6

Mode()

&attraction = new()

&attraction.AttractionName = "Christ the Redeemer"
&attraction.CountryId
&attraction.CityId

&attraction.Mode() → TrnMode.Update

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5

1

2

Rio de Janeiro

2

Brazil

Christ the Redeemer

Monument

&attraction.Mode() → TrnMode.Insert

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

If &attraction.Insert()
Commit

endif

Let's see what happens when working with the Business Component.

The Mode() method allows you to check which mode it is in. It is read-
only.

If you define an &attraction variable and check what mode it's in
before you do anything else, you'll see that it's in Insert mode.

Every time you restart it with New it will be in that mode.

Then you have to enter the values you want to give to the attributes of
the associated table (only those you don't want to leave empty).
Throughout this time the business component variable will remain in
Insert mode.

What happens once the Insert method is executed?
The insertion in the database will be attempted, executing the
corresponding rules. If the process is successful, all the elements of
the business component variable are loaded with the corresponding
values. Since AttractionId is autonumbered, you get the value that
was assigned to it in the database, and the attributes that are inferred
in the transaction are also loaded here, so they may be queried.
In addition, the mode of the business component variable is changed
to Update.

7

BC: Update

&attraction = Load(2)

&attraction.Mode() → TrnMode.Update

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

2

3

2

Beijing

1

China

The Great Wall

Monument

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

If &attraction.Update()
Commit

endif

Insert, Update, Delete

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

3

3

Tourist site

&attraction.Save()
if &attraction.Success()

Commit
endif

On the other hand, if what we wanted was to modify the tourist
attraction of ID 2 by changing its category to it was
enough to:
• Load in the &attraction Business component variable the values
of the record with primary key 2 of the Attraction table (using the
Load method, which automatically left the variable in Update mode
if that record existed),
• Assign a value to all the elements of the Business Component to
be modified (in this case only CategoryId, as we want the others to
keep the value they had).
• Lastly, invoke the Update method to perform this update in the
database, and
• Commit if the operation was successfully executed.

Once the Update is done, the CategoryName element, which is
inferred in the transaction, remains in the variable with the correct
value. The variable remains in Update mode.

Here too, it is equivalent to using the Save method; in this case,
since the business component variable after the Load was left in
Update mode, the Save will try to update and not insert.

8

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 3

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 3

5 Christ the Redeemer 1 2 2

For each Attraction

&attraction.Load(AttractionId)

If &attraction.Update ()
Commit

endif

endfor

&attraction.Load(2)

If &attraction.Update ()
Commit

endif

Insert, Update, Delete

BC: Update

AttractionId&attraction.Load(AttractionId)

If &attraction.Update()
Commit

endif

If what we wanted was to change the category of all the tourist
attractions in Beijing that were monuments, to assign them the

category, then it was enough to place the previous code inside a
For Each command that selects only the desired records, and the Load is
made for each AttractionId of those records.

9

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

For each Attraction

&attraction.Load(AttractionId)

If &attraction.Update ()
Commit

endif

endfor

&attraction.Load(2)

If &attraction.Update ()
Commit

endif

Insert, Update, Delete

BC: Update

AttractionId&attraction.Load(AttractionId)

If &attraction.Update()
Commit

endif

&attraction.Mode() → TrnMode.Update

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

2

3

Beijing

1

China

The Great Wall

MonumentTourist site

3

3

2

Thus, first the Load of that of ID 2 is made, the variable remains in Update
mode, then its CategoryId is modified, and when executing the Update
method the record in the table is updated and the variable remains with the
corresponding CategoryName.

10

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

For each Attraction

&attraction.Load(AttractionId)

If &attraction.Update ()
Commit

endif

endfor

&attraction.Load(2)

If &attraction.Update ()
Commit

endif

Insert, Update, Delete

BC: Update

AttractionId&attraction.Load(AttractionId)

If &attraction.Update()
Commit

endif

&attraction.Mode() → TrnMode.Update

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

2

3

Beijing

1

China

The Great Wall

MonumentTourist site

3

3

4

Forbidden city

2

3

And then the same for the next record that meets the conditions;
that is, the one with ID 4.

11

Insert, Update, Delete
&attraction.Load(2)
&attraction.Delete()

If &attraction.Success()
Commit

endif

BC: Delete

&attraction.Mode() → TrnMode.Update

AttractionId

AttractionName

CountryId

CountryName

CityId

CityName

CategoryId

CategoryName

2

3

2

Beijing

1

China

The Great Wall

Monument

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

&attraction.Mode() → TrnMode.Delete

On the other hand, if we wanted to delete a tourist attraction, for
example, the one with the identifier 2, we first had to load it into the
Business Component variable, after which it remains in Update mode
and then use the Delete method, which deletes it from the table and
leaves the variable loaded with the data but in Delete mode. Then it will
be checked for Success so as to perform a Commit.

12

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

2 The Great Wall 3 1 2

3 Eiffel Tower 2 1 2

4 Forbidden city 3 1 2

5 Christ the Redeemer 1 2 2

AttractionId AttractionName CountryId CityId CategoryId

1 Louvre Museum 2 1 1

3 Eiffel Tower 2 1 2

5 Christ the Redeemer 1 2 2

&attraction.Load(2)
&attraction.Delete()

If &attraction.Success()
Commit

endif

For each Attraction

&attraction.Load(AttractionId)
&attraction.Delete()

If &attraction.Success()
Commit

endif

endfor

Insert, Update, Delete

BC: Delete

But what if we wanted to eliminate all the monument type attractions in
Beijing? Again, we would place the attractions one by one with the For
Each command and load them with the Load action and then use the
Delete method to remove them.

13

training.genexus.com
wiki.genexus.com

