
Rules definition

Some controls in the customer entry

In addition to all the automatic controls included by GeneXus in the applications it
generates, sometimes users request that we make some specific controls.

In transactions, the rules that must be complied with, or the controls that we are
asked to validate, are defined in the Rules section.

Some controls in the customer entry

If, for example, a requirement is not to allow storing of clients without a name... we
have a rule called Error that will enable us to avoid that.

We type open brackets and between single quotation marks we enter the text
we want to have displayed in the event that the user tries to leave a client name
blank... we close brackets... and now we only have to indicate the condition that must
be met for the text to be displayed.

The condition is that the CustomerName attribute is empty so we write
CustomerName period, and here we select: IsEmpty.

All the rules we state must end with a semicolon, so we include it.

We save... and press F5 to see this rule at runtime.

Error rule

We run the Customer transaction, and if we leave the client name blank and leave
the field, the text we defined is displayed.

The Error rule allow us to move on if the condition continues to be met so,
the user either enters a client name to be able to continue or cancels.

Note that if we try to click on the surname, the message stays on screen
because the condition continues to be met.

We enter a name... and see that we can continue entering the rest of the client's
details.

Error rule

If another requirement involved preventing the surname from being left blank,
a similar rule would also have to be stated. So, we copy and paste this rule definition...
replace with lastname and change the attribute involved.

We press F5... run Customer... and leave the client's name empty... the error
associated with a blank name is displayed... we enter Paul... and try to leave the
surname empty.... the error associated with a blank surname is displayed.

Message rule

There is another rule whose syntax is very similar to that of the Error rule it is called
Message and the only difference with Error is that if the condition is met, the
message is displayed as a notice or warning, and the user can continue working. That
is to say, it prevent users from moving on, as does the Error rule.

If, for example, we want to inform that the client's phone number has been left blank
without forcing the user to enter it, we can create a Message rule, open brackets, enter
the text between single (or double) quotation marks... 'The phone is . We close
brackets... and next we define the condition for the rule to be executed:
CustomerPhone period IsEmpty. And we type a semicolon to complete the rule
definition.

Message rule

We press F5 to try this functionality...

Note that if we leave the phone blank and try to leave the field, the message that we
created is displayed. In this case it is orange and we can move on.

Default rule

▪ predetermined
value).

suppose that our users at the travel agency have told us that they are interested in
storing the date on which each customer is added.

So, we need to create a new attribute in the Customer transaction to store this date. We
enter CustomerAddedDate of Date type and now we would only have to
automatically assign it date.

We go to the Rules section... and select a rule called Default.

This rule allows us to start an attribute or variable with a value.

In this way, the syntax of the Default rule has been inserted. Now we will replace the
attribute between brackets with the attribute that we want to initialize, which is
CustomerAddedDate, and we will also add the value that we want it to use, which is
today's date.

is a predefined variable that always has date loaded in order
to use it.

Variables

▪ Value temporarily stored in memory with an associated name and data type. To make
reference to a variable, the symbol must be used.

Example: The variable &FirstName stores in memory

DATA TYPE

Numeric

Character

Date

Etc

&FirstName

Petervalue =

A variable is one space in memory with an associated symbolic name and a data type
that can be stored (text, numbers, dates, etc.). This variable has a certain value stored. In
general, the variable name is used to make reference to this stored value.

Attributes

▪ Value physically stored in the database

CustomerId CustomerFirstName CustomerLastName

1 Peter Smith

2 Susan Parker

CUSTOMER TABLE

An attribute, on the other hand, is one value physically stored in the database.

Variables definition

Variables can only be defined within each object where they are used.

1) Using the Variable selector:

2) Defining it when declaring it:

Right clicking

System predefined
variables

Variables defined by the
developer

Most GeneXus objects allow defining variables. These variables are local, which
means that they can only be used within each object. To make reference to a
variable, the symbol must be used. For example, &Total.

If we open the Variables selector within a transaction we will see that a set of
variables has already been defined. They are system variables, such as for example,
&Today, &Mode, etc. In particular, the &Today variable allows obtaining the current
date taken from the system.

In addition to these system variables, the developer can also create his/her own
variables (user variables). For example, a MyDate variable of Date type.

When creating variables, these options are available:

1. Create them through the Variables selector included in all GeneXus objects, as
we've just done.

2. Create them at the time they will be used in the place they are needed. For
example: type the ampersand symbol to indicate that a variable name comes next,
followed by the variable name. Lastly, click on the name given to the variable and
right-click to select this option from the context menu: Add Variable.

We can see that the variable properties are edited. Now we can assign it a data type.

It has been added to the Variables selector.

Variables definition

3) Insert \ Variable:

4) Automatic, according to the name pattern:

a) Domain : Name

&FromDate - It is automatically defined as Date.

b) &IsXxx | &HasXxx

→ They are automatically defined as Boolean

3. The third option is to select Insert from the menu bar and then Variable and New
Variable

In the example displayed, the Default rule is used to assign the current date to the
CustomerAddedDate attribute by default.

Now we save... and press F5.

Impact Analysis

We are notified that the new attribute CustomerAddedDate will be added to the
CUSTOMER table.

We click on Reorganize...

Default rule

And once again we have the application ready to be executed.

We click on Customer...

And we can see that the new attribute is already started with
date.

If we entered the Default rule, the date field would be empty as the other fields.

We enter a customer Robert Hill who lives on 81st Street . his phone number is
760 5100 and his email address is Rhill@hotmail.com note that date is
suggested, but we can change it.

▪

If the users at the travel agency were interested in allowing the date to be edited,
preventing future dates from being entered... we could create an Error rule.

We open brackets and type date must be lower or equal than close
brackets and add the condition if CustomerAddedDate > &today;

To try this at runtime... we press F5...

We enter Alex Johnson

And if we try to enter a date higher than today...

The condition that we defined is met and the associated error is displayed.

Now, suppose that our users at the travel agency have told us that the date a
client was added cannot be edited. It must be shown as disabled in the form and
saved as suggested by the application...

To meet this request, we would have to remove this rule because it no longer makes
sense.

Disabling a field/attribute

Also, we would have to state a new rule... Noaccept.

We replace the text or between brackets with the attribute
CustomerAddedDate and delete because we want this rule to
always be executed.

So far, we have been writing the attribute names by heart and this can lead to
errors. To avoid this, one option we have is to insert the attributes from the
Options menu.
To do so, we select and then or use the shortcut ctrl+Shift+A.
In this way, we will access a list of all the attributes declared in our KB, where we
can filter by name and insert the selected attribute.

The other option is to start typing the attribute name, for example,
and press ctrl+space. Using this shortcut, we will be shown all the objects in our
KB that start with that name, and if we click on the attribute we need it will be
inserted. These ways of selecting the attribute instead of writing it allow us to
save time and avoid typing errors.

go back.

Disabling a field/attribute

Now try this behavior... F5...

As we can see, the date is initialized by the Default rule and disabled by the
Noaccept rule.

We've seen that to initialize the CustomerAddedDate attribute with today's date,
we have to define this Default rule.

It's important to know that every Default rule that we define will be executed only
when we're adding records.

That is to say, if we query a customer that was already saved, the Default rule will
not be executed... because this customer already has an insertion date and the
Default rule doesn't overwrite it.

Assignment Rules

It will always be run, regardless if the user is inserting

or updating data.

It will only be run when a new record is being
inserted. This behavior is equal to the Default rule.

Now, let's suppose that instead of defining the Default rule we made this
assignment: CustomerAddedDate = &Today;

By defining this rule, the CustomerAddedDate attribute would always be
assigned with today's date. This is an assignment rule, and it will always be
executed, regardless if the user is inserting or updating data, etc.

A condition can be added to an assignment rule so that it is executed only
when the user is performing a certain action in the database, such as an
insertion, update or deletion.

Let's do it. We type if insert:

The behavior of the rule defined in this way will be the same as that of the
Default rule, because now we have conditioned the assignment to be made
only if a record is being inserted. This is what the Default rule does.

Just like a rule can be conditioned with if insert, we can condition rules to be
executed if update or if delete as well.

Triggering order of rules

The order in which rules are defined does not necessarily correspond to the order in
which they will be executed.

Something important to note and learn is that the order in which rules are defined
necessarily match the order in which they will be executed.

This set of rules, could be stated in any other order and the result at runtime
would be exactly the same, because GeneXus decides when each one of the
defined rules should be triggered.

Finally, remember that each transaction may need to have its own behavior rules
defined.

In this case, defined rules in the Clients transaction to check the behavior
that we were asked to control when users interact with the clients' details. Most
likely, the agency wants to control certain rules or behavior for attractions as
well... or for another transaction. To this end, each transaction has its own rules
section.

Lastly, we save the changes in GXserver.

Serial Rule

Now let's briefly look at a situation that arises in the Country transaction.
In previous videos, when we created the second level named City in this
transaction, GeneXus generated the CountryCity table in the database. As we saw,
the primary key of this table is made up of two attributes, CountryId and CityId.
Remember that both the CountryId attribute and the CityId attribute have been
assigned the ID domain, which has been defined as auto-numbered.
When this table was created, GeneXus triggered a Warning indicating that the
CityId attribute's autonumber property set to True would be ignored.

Why did this happen?
Because the autonumber property only applies to simple primary keys, that is, to
those made up of a single attribute, not to compound primary keys, as in this case,
made up of two attributes: CountryId and CityId.
To automatically number a second level, we will use the Serial rule.
For this, let's go to the rules section of the Country transaction and insert the Serial
rule.
As a first parameter we will be asked to enter an attribute, which will be the one to
number automatically. Therefore, we enter CityId.
As a second parameter, we will be asked to enter another attribute, which will be in
charge of saving the last value assigned to the attribute we want to number
automatically, in this case CityId. For this we will create a new attribute, which must
be at the level above the one we want to number.

We return to the transaction structure, and create it on the first level of the
transaction; we will call it CountryLastLine and it will be of the Numeric type.
So as to be able to save the changes, we will partially comment the code entered in
the Rules section, because it is still incomplete and does not allow saving. Now we
save, uncomment the rule, and enter as second parameter the CountryLastLine

attribute.

Finally, this rule asks us to enter a numerical value, which will correspond to the
automatic number increment. We enter the value 1 and this way the CityId numbering
will be incremented one by one.
We save the changes made, and run the application.
We are asked to reorganize the database to add the CountryLastLine attribute in the
Country table; we confirm.
We open the Country transaction and access Germany. And in city we will not enter an ID
value, we will only enter its name, in this case Berlin.
After choosing the city ID, we press Tab and when leaving the field, we see that this city
has been assigned CityId value 1. The attribute CountryLastLine has the same value.
Remember that this attribute is in charge of saving the last value entered in CityId.

Let's try to enter another city, so we enter Hamburg. Again, when we leave the CityId
field with the Tab key without writing anything, the ID was automatically assigned a
value, in this case 2 and the CountryLastLine attribute took this last value again.
If we enter a third city, based on the Serial rule we created, GeneXus will take the value of
the CountryLastLine attribute; it will add 1, since it is the increment value we defined, and
the resulting value will be assigned to CityId and CountryLastLine, and so on.

If we consider the behavior of the rules we have seen so far, we might think that
they are only executed on the client, since, as we saw in the case of the Error rule
in the client's name, as soon as the user leaves the field, leaving it empty, the
message is triggered. However, the user can continue filling the other fields, and
when he presses Confirm, then the part of the program associated with the
transaction executed on the server is the one that takes control. The rule is
triggered again and, in this case, because it is precisely the Error rule, it prevents
the record from being saved in the database table.

Therefore, the rules we have seen are validated both in the client (this is called
Client side validation) and in the server. We could disable the execution of rules on
the client, but we will not be able to disable their execution on the server, which is
the one that really controls what will be done in the database. We should keep in
mind that the browser is a hostile environment, which could be subject to attacks
that send tampered information to the Server. The Server is the one that must have
ultimate control over the data.
The rules in the client are executed to provide a good user experience, so that the
user feels that the application is always operating.
Therefore, the same rules are incorporated both in the program running on the
front end (the part that maintains the status and business logic, as the
representative of the server on the client) and in the program itself on the back
end; i.e. in the business logic validation.
Understanding this will be important later, when we add a little complexity to what
we can control from the rules.

Finally, we will save the changes in GeneXus Server.

So far, we have seen that:

▪ Rules allow programming transaction behavior.

▪ GeneXus determines the order in which rules are triggered, with certain independence from the
order in which they have been written.

▪ Rules can be conditioned to, among other things, the operation modes of the transaction (Insert,
Update, Delete).

▪ Rules are triggered within the scope of the transaction where they have been stated.

training.genexus.com
wiki.genexus.com

