
Rules definition

Rules in Transactions

Some controls in the customer entry

In addition to all the automatic controls included by GeneXus in the applications it generates, sometimes users request
that we make some specific controls.

In transactions, the rules that must be complied with, or the controls that we are asked to validate, are defined in the Rules
section.

Rules in Transactions

Some controls in the customer entry

If, for example, a requirement is not to allow storing of clients without a name... we have a rule called Error that will enable
us to avoid that.

We type “Error”, open brackets and between single quotation marks we enter the text we want to have displayed in the
event that the user tries to leave a client name blank... we close brackets... and now we only have to indicate the condition
that must be met for the text to be displayed.

The condition is that the CustomerName attribute is empty… so we write “if CustomerName”, period, and here we select:
IsEmpty.

All the rules we state must end with a semicolon, so we include it.

We save... and press F5 to see this rule at runtime.

Rules in Transactions

Error rule

We run the Customer transaction, and if we leave the client name blank and leave the field, the text we defined is
displayed.

The Error rule doesn’t allow us to move on if the condition continues to be met… so, the user either enters a client name to
be able to continue or cancels.

Note that if we try to click on the client’s surname, the message stays on screen because the condition continues to be
met.

We enter a name... and see that we can continue entering the rest of the client's details.

DEMO

Rules in Transactions

[DEMO: https://youtu.be/dhXcPuqxEPs]

If another requirement involved preventing the client’s surname from being left blank, a similar rule would also have to be
stated. So, we copy and paste this rule definition... replace “name” with lastname and change the attribute involved.

We press F5... run Customer... and leave the client's name empty... the error associated with a blank name is displayed...
we enter Paul... and try to leave the surname empty.... the error associated with a blank surname is displayed.

Rules in Transactions

Message rule

There is another rule whose syntax is very similar to that of the Error rule… it is called Message… and the only difference
with Error is that if the condition is met, the message is displayed as a notice or warning, and the user can continue
working. That is to say, it doesn’t prevent users from moving on, as does the Error rule.

If, for example, we want to inform that the client's phone number has been left blank without forcing the user to enter it,
we can create a Message rule, open brackets, enter the text between single (or double) quotation marks... 'The phone is
empty’. We close brackets... and next we define the condition for the rule to be executed: “if CustomerPhone”… period…
IsEmpty. And we type a semicolon to complete the rule definition.

DEMO

Rules in Transactions

[DEMO: https://youtu.be/iN5j24xKqNo]

We press F5 to try this functionality...

Note that if we leave the phone blank and try to leave the field, the message that we created is displayed. In this case it is
orange and we can move on.

Rules in Transactions

Default rule

▪ predetermined
value).

Let’s suppose that our users at the travel agency have told us that they are interested in storing the date on which each
customer is added.

So, we need to create a new attribute in the Customer transaction to store this date. We enter CustomerAddedDate … of
Date type… and now we would only have to automatically assign it today’s date.

We go to the Rules section... and select a rule called Default.

This rule allows us to start an attribute or variable with a value.

In this way, the syntax of the Default rule has been inserted. Now we will replace the attribute between brackets with the
attribute that we want to initialize, which is CustomerAddedDate, and we will also add the value that we want it to use,
which is today's date.

“Ampersand today” is a predefined variable that always has today’s date loaded in order to use it.

Rules in Transactions

Variables

▪ Value temporarily stored in memory with an associated name and data type. To make
reference to a variable, the symbol must be used.

Example: The variable &FirstName stores in memory

DATA TYPE

Numeric

Character

Date

Etc

&FirstName

Petervalue =

A variable is one space in memory with an associated symbolic name and a data type that can be stored (text, numbers,
dates, etc.). This variable has a certain value stored. In general, the variable name is used to make reference to this stored
value.

Rules in Transactions

Attributes

▪ Value physically stored in the database

CustomerId CustomerFirstName CustomerLastName

1 Peter Smith

2 Susan Parker

CUSTOMER TABLE

An attribute, on the other hand, is one value physically stored in the database.

Rules in Transactions

Variables definition

Variables can only be defined within each object where they are used.

1) Using the Variable selector:

2) Defining it when declaring it:

Right clicking

System predefined
variables

Variables defined by the
developer

Most GeneXus objects allow defining variables. These variables are local, which means that they can only be used within
each object. To make reference to a variable, the “&” symbol must be used. For example, &Total.

If we open the Variables selector within a transaction we will see that a set of variables has already been defined. They are
system variables, such as for example, &Today, &Mode, etc. In particular, the &Today variable allows obtaining the current
date taken from the system.

In addition to these system variables, the developer can also create his/her own variables (user variables). For example, a
MyDate variable of Date type.

When creating variables, these options are available:

1. Create them through the Variables selector included in all GeneXus objects, as we've just done.

2. Create them at the time they will be used in the place they are needed. For example: type the ampersand symbol to
indicate that a variable name comes next, followed by the variable name. Lastly, click on the name given to the variable
and right-click to select this option from the context menu: Add Variable.

We can see that the variable properties are edited. Now we can assign it a data type.

It has been added to the Variables selector.

Rules in Transactions

Variables definition

3) Insert \ Variable:

4) Automatic, according to the name pattern:

a) Domain : Name

&FromDate - It is automatically defined as Date.

b) &IsXxx | &HasXxx

→ They are automatically defined as Boolean

3. The third option is to select Insert from the menu bar and then Variable… and New Variable…

In the example displayed, the Default rule is used to assign the current date to the CustomerAddedDate attribute by
default.

Now we save... and press F5.

Rules in Transactions

Impact Analysis

We are notified that the new attribute CustomerAddedDate will be added to the CUSTOMER table.

We click on Reorganize...

DEMO

Rules in Transactions

[DEMO: https://youtu.be/jqIcfWNDhOk]

And once again we have the application ready to be executed.

We click on Customer...

And we can see that the new “Added Date” attribute is already started with today’s date.

If we hadn’t entered the Default rule, the date field would be empty as the other fields.

We enter a customer… Robert… Hill… who lives on 81st Street…. his phone number is 760 5100 and his email address is
Rhill@hotmail.com … note that today’s date is suggested, but we can change it.

Rules in Transactions

More controls are required…

▪

If the users at the travel agency were interested in allowing the date to be edited, preventing future dates from being
entered... we could create an Error rule.

We open brackets and type ‘The date must be lower or equal than today’, close brackets … and add the condition if
CustomerAddedDate > &today;

Rules in Transactions

DEMO

[DEMO: https://youtu.be/EPiudriAo_M]

To try this at runtime... we press F5...

We enter Alex… Johnson…

And if we try to enter a date higher than today...

The condition that we defined is met and the associated error is displayed.

Now, let’s suppose that our users at the travel agency have told us that the date a client was added cannot be edited. It
must be shown as disabled in the form and saved as suggested by the application...

To meet this request, we would have to remove this rule because it no longer makes sense.

Rules in Transactions

Disabling a field/attribute

Also, we would have to state a new rule... Noaccept.

We replace the text “attribute or variable” between brackets with the attribute CustomerAddedDate and delete “if
condition”, because we want this rule to always be executed.

So far, we have been writing the attribute names by heart and this can lead to errors. To avoid this, one option we have is
to insert the attributes from the Options menu.
To do so, we select “Insert” and then “Attribute,” or use the shortcut ctrl+Shift+A.
In this way, we will access a list of all the attributes declared in our KB, where we can filter by name and insert the selected
attribute.

The other option is to start typing the attribute name, for example, “Customer” and press ctrl+space. Using this shortcut,
we will be shown all the objects in our KB that start with that name, and if we click on the attribute we need it will be
inserted. These ways of selecting the attribute instead of writing it allow us to save time and avoid typing errors.
Let’s go back.

Rules in Transactions

Disabling a field/attribute

Now let’s try this behavior... F5...

As we can see, the date is initialized by the Default rule and disabled by the Noaccept rule.

We've seen that to initialize the CustomerAddedDate attribute with today's date, we have to define this Default rule.

It's important to know that every Default rule that we define will be executed only when we're adding records.

That is to say, if we query a customer that was already saved, the Default rule will not be executed... because this customer
already has an insertion date… and the Default rule doesn't overwrite it.

Rules in Transactions

Assignment Rules

It will always be run, regardless if the user is

inserting or updating data.

It will only be run when a new record is being
inserted. This behavior is equal to the Default rule.

Now, let's suppose that instead of defining the Default rule we made this assignment: CustomerAddedDate = &Today;

By defining this rule, the CustomerAddedDate attribute would always be assigned with today's date. This is an assignment
rule, and it will always be executed, regardless if the user is inserting or updating data, etc.

A condition can be added to an assignment rule so that it is executed only when the user is performing a certain action in
the database, such as an insertion, update or deletion.

Let's do it. We type if insert:

The behavior of the rule defined in this way will be the same as that of the Default rule, because now we have conditioned
the assignment to be made only if a record is being inserted. This is what the Default rule does.

Just like a rule can be conditioned with if insert, we can condition rules to be executed if update or if delete as well.

Rules in Transactions

Triggering order of rules

The order in which rules are defined does not necessarily correspond to the order in
which they will be executed.

Something important to note and learn is that the order in which rules are defined doesn’t necessarily match the order in
which they will be executed.

This set of rules, could be stated in any other order and the result at runtime would be exactly the same, because GeneXus
decides when each one of the defined rules should be triggered.

Finally, remember that each transaction may need to have its own behavior rules defined.

In this case, we’ve defined rules in the Clients transaction to check the behavior that we were asked to control when users
interact with the clients' details. Most likely, the agency wants to control certain rules or behavior for attractions as well...
or for another transaction. To this end, each transaction has its own rules section.

Lastly, we save the changes in GXserver.

Serial Rule

Now let's briefly look at a situation that arises in the Country transaction.
In previous videos, when we created the second level named City in this transaction, GeneXus generated the CountryCity
table in the database. As we saw, the primary key of this table is made up of two attributes, CountryId and CityId.
Remember that both the CountryId attribute and the CityId attribute have been assigned the ID domain, which has been
defined as auto-numbered.
When this table was created, GeneXus triggered a Warning indicating that the CityId attribute's autonumber property set
to True would be ignored.

Why did this happen?
Because the autonumber property only applies to simple primary keys, that is, to those made up of a single attribute, not
to compound primary keys, as in this case, made up of two attributes: CountryId and CityId.
To automatically number a second level, we will use the Serial rule.
For this, let's go to the rules section of the Country transaction and insert the Serial rule.
As a first parameter we will be asked to enter an attribute, which will be the one to number automatically. Therefore, we
enter CityId.
As a second parameter, we will be asked to enter another attribute, which will be in charge of saving the last value
assigned to the attribute we want to number automatically, in this case CityId. For this we will create a new attribute,
which must be at the level above the one we want to number.

We return to the transaction structure, and create it on the first level of the transaction; we will call it CountryLastLine and
it will be of the Numeric type.
So as to be able to save the changes, we will partially comment the code entered in the Rules section, because it is still
incomplete and does not allow saving. Now we save, uncomment the rule, and enter as second parameter the
CountryLastLine attribute.

Finally, this rule asks us to enter a numerical value, which will correspond to the automatic number increment. We enter
the value “1,” and this way the CityId numbering will be incremented one by one.
We save the changes made, and run the application.
We are asked to reorganize the database to add the CountryLastLine attribute in the Country table; we confirm.
We open the Country transaction and access Germany. And in city we will not enter an ID value, we will only enter its
name, in this case Berlin.

After choosing the city ID, we press Tab and when leaving the field, we see that this city has been assigned
CityId value 1. The attribute CountryLastLine has the same value. Remember that this attribute is in charge of
saving the last value entered in CityId.

Let's try to enter another city, so we enter Hamburg. Again, when we leave the CityId field with the Tab key
without writing anything, the ID was automatically assigned a value, in this case “2,” and the CountryLastLine
attribute took this last value again.
If we enter a third city, based on the Serial rule we created, GeneXus will take the value of the CountryLastLine
attribute; it will add 1, since it is the increment value we defined, and the resulting value will be assigned to
CityId and CountryLastLine, and so on.

If we consider the behavior of the rules we have seen so far, we might think that they are only executed on the client,
since, as we saw in the case of the Error rule in the client's name, as soon as the user leaves the field, leaving it empty, the
message is triggered. However, the user can continue filling the other fields, and when he presses Confirm, then the part of
the program associated with the transaction executed on the server is the one that takes control. The rule is triggered
again and, in this case, because it is precisely the Error rule, it prevents the record from being saved in the database table.

Therefore, the rules we have seen are validated both in the client (this is called Client side validation) and in the server. We
could disable the execution of rules on the client, but we will not be able to disable their execution on the server, which is
the one that really controls what will be done in the database. We should keep in mind that the browser is a hostile
environment, which could be subject to attacks that send tampered information to the Server. The Server is the one that
must have ultimate control over the data.
The rules in the client are executed to provide a good user experience, so that the user feels that the application is always
operating.
Therefore, the same rules are incorporated both in the program running on the front end (the part that maintains the
status and business logic, as the representative of the server on the client) and in the program itself on the back end; i.e. in
the business logic validation.
Understanding this will be important later, when we add a little complexity to what we can control from the rules.

Finally, we will save the changes in GeneXus Server.

Rules in Transactions

So far, we have seen that:

▪ Rules allow programming transaction behavior.

▪ GeneXus determines the order in which rules are triggered, with certain independence from the
order in which they have been written.

▪ Rules can be conditioned to, among other things, the operation modes of the transaction (Insert,
Update, Delete).

▪ Rules are triggered within the scope of the transaction where they have been stated.

Videos training.genexus.com

Documentation wiki.genexus.com

Certifications training.genexus.com/certifications

