Rule Triggering Events in Transactions

Continued

GeneXus




Flight
(o
B S )
oo —H 35 ¢ 0 | T seat guantty mustnt e iss han e

. Departure Airport Id i
>= 8 registered seats

Departure Airport Name

F¥ Fight X Departure Country Id 0

Structure | % Web Form Events | Variables | Patterns

Error("The seat quantity mustn't be less than eight™) Departure Country Name
if FlightCapacity < 8;

Departure City Id 0
Departure City Name

Arrival Airport Id

In the previous video, we saw that there are cases in which the moment
chosen by GeneXus to execute a rule is not the one we need, so we must
be able to tell the rule which is the right moment.

We studied the case in which we needed to control that each flight had at
least 8 registered seats. Since GeneXus executed the rule before giving
the user time to register the seats,



AfterLevel event

Browser —_—y Server Database

on AfterLevel ——»

("The seat quantity mustn’'t be less than eight”
if FlightCapacity < 8

on AfterLevel

Level FlightSeatChar;

we had to delay the moment it had initially chosen to trigger it, using the
on Afterlevel triggering moment with a line attribute (FlightSeatChar).

In this way, we managed to have the rule triggered after running through
the level associated with the seats.



Beforelnsert event

Server Database

on Beforelnsert ——

on Beforelnsert ———
on Beforelnsert ——
on Beforelnsert ——
on Beforelnsert ——

We also mentioned that there were other triggering moments, such as “on
Beforelnsert,” if we wanted to do or evaluate something immediately
before the data from the header or each line is inserted in the database,



AfterInsert event

Server Database
—p — on Afterlnsert
—_— — on Afterlnsert
— ——— on Afterinsert
e —— on Afterinsert
—_— —— on Afterinsert

the “on Afterlnsert” moment to indicate that the rule be triggered
immediately after the insertion of each header or line,



AfterComplete event

Server Database
_— \/
-5 v
— Y
— v
S—— v

on AfterLevel ——

COMMIT

on AfterComplete ——

and the "on AfterComplete" moment, which corresponds to the moment
immediately following the Commit, a command whose purpose is to
validate the data inserted, modified or deleted.



Execution of rules

Client Server

In this video, we'll take a closer look at these triggering moments. But first,
let's remember that some rules are validated both on the client (browser)
and on the server, and others are validated only on the server, because
they have to do with the database.

GeneXus




Error("It is not possible to leave a flight without a price.")
if FlightPrice.IsEmpty();

Aurival Country Id 2

Arival Country Name France

Aurival City Id 1

Arival City Name Paris

Price 0.00 | itis not possible 1o leave a flight without a price

Discount Percentage 0

Alrline Id

Alrline Name

Airline Discount Percentage 0
Final Price 0.00

For example: if we had an Error rule that prevented us from entering or
modifying a flight without a price, as soon as we left that field the error
message would appear.



GeneXus

Error("It is not possible to leave a flight without a price.") Error("It is not possible to leave a flight without a price.")
if FlightPrice.IsEmpty(); if FlightPrice.IsEmpty();

Price 0 | It is not possible to leave a flight without a price

Client-Side validation

This happens because the client performs the validation to provide a good
user experience, responding to them in an agile way so that they feel their
interaction with the system is seamless. This validation performed on the
client side is called Client-Side Validation.

But this rule will be executed again later on the server, since it is the server
that ensures that there are no security violations, and it is the only one
allowed to operate on the database, so it must ensure that all the logic is
consistent. It will execute all the rules again, when it has all the
information. This happens after the user presses the Confirm button.
There the data travels from the web client (browser) to the web server,
and the server runs through the form again from top to bottom, as if it
were a user, so all the rules and formulas will be triggered again in the
order corresponding to the attributes of the form with which they are
associated.

In addition, all the rules that have an associated triggering event (i.e. that
have the on prefix at the end of their statement), will be executed at the
moment corresponding to that event. These events only take place on the
server and capture the moment before or after a milestone, which is
usually related to the database.



Milestones when inserting a flight

« Validate the header record to be inserted Server Database

« Insert the header record in the table

Then the same for each line:
« Validate the line record to be inserted
« Insert the line record in the table
The next milestone is when: ‘
«  You finish working with the level —_
—
And the next one is:
«  The Commit action —— COMMIT

Which are those milestones?

Let's think, for the sake of simplicity, that we're inserting a flight. In this

order:

» Validate the header record to be inserted (to make sure that the
referential integrity and duplicate controls did not fail; it happens after
having gone through each field of the header and after having
triggered each associated rule, at the end of it all).

» Insert the header record in the corresponding table

Then we do the same for each line:

» Validate the record of the line to be inserted (it makes sure that the
referential integrity and duplicate controls did not fail).

» Insert the line record in the corresponding table

At the end of this process, where both the record corresponding to the
header and those corresponding to all the lines have been inserted in the
database, the next milestone is when:

»  You finish working with the level

And the next one is:
« The Commit action, which validates all these operations on the
database, making them permanent.

So, we have events that capture the moment before or after these
milestones, so that we can execute rules at those precise moments.



ReturnFlightld

Name Type
TV Fiight Flight
? Fughud 1d
¥ Fight* X
Structure | % Web Form Events | Variables | Patterns

11 FlightId = ReturnFlightId();
r("The seat quantity mustn't be less than eight")
if FlightCapacity < 8

on AfterLevel
Level FlightSeatChar;

At present, in the Flight transaction, we have defined the flight identifier
(Flightld) as autonumbered.

If in real life, as is usually the case, the flight identifier is made up of letters
and numbers depending on the airline, departure and destination, the
numeric and autonumbered Flightld attribute is of no use to us.

So let's suppose we have a procedure called ReturnFlightld, which we can
invoke to be run and return the identifier to be assigned to a new flight.

(We will study the procedure object later, so you cannot, at the moment,
reproduce what we will show here).

If we write the rule shown above, where we are calling and assigning its
result to the Flightld attribute, when will it be triggered?

As soon as you open the transaction or want to edit a pre-existing flight.
We do not condition the triggering of the rule to the mode, so it will be
executed regardless if the user is accessing the Flight transaction to insert,
modify or delete a flight, when in fact we want the procedure to be
invoked only if we are inserting a new flight.

n



ReturnFlightld

Name Type
TV Fiight Flight
? Fughud 1d
B Fught* X
Structure | % Web Form Events | Variables | Patterns

FlightId = ReturnFlightId() if insert;

r("The seat quantity mustn't be less than eight")
if FlightCapacity < 8

on AfterlLevel

Level FlightSeatChar;

It is also worth pointing out that if we were in the Flight transaction in
Update mode (i.e. if the flight already existed and we were only modifying
it), we would not be able to change the value of the flight identifier, as the
primary keys cannot be modified. If we need to change a primary key we
have no choice but to create a new record with the new key value, and
delete the old one.

So we condition the rule to be executed only when you want to insert
data.



Q@ Flight x + = o X

€« C @ trialapps3.genexus.com/Id5d977a49afaf027c2fccbfe96edebb1/flight.aspx & &« O» ‘ H
Application Name
R Flight
Flight
Id E B —

Departure Airport Id

Departure Airport Name

Departure Country Id 0

Departure Country Name

Departure City Id 0

Departure City Name

Arrival Airport Id

Arrival Airport Name

Since the transaction opens in that mode, the rule that is assigning a value
to the attribute is already being triggered, before anything has been done.
But it could happen that after completing the header data and some lines,
we have to cancel the entry for some reason, to do it later.

13



Q@ Flight x + = o X

“ C @ trialapps3.genexus.com/Id5d977a49afaf027c2fccbfed6edebbl1/flight.aspx & &« O» ‘ H
Application Name
Resent Flight
Flight
Id m B —

Departure Airport Id

Departure Airport Name

Departure Country Id 0

Departure Country Name

Departure City Id 0

Departure City Name

Arrival Airport Id

Arrival Airport Name

When we try it again, we see that it will give us another flight number. The
reason is that we had asked for a number from the procedure that we
didn't use in the end, and that number was lost.

14



20 Fightt X
Structure | % Web Form Events | Variables | Patterns

1:{Flightld = ReturnFlightId() if i t on AfterComplete;
Server Database
("The seat quantity mustn't be less than eight™)

if FlightCapacity < 8

on AfterlLevel

Level FlightSeatChar;

—— COMMIT

on AfterComplete —

To make sure we don't waste a number that we won't use, how about
calling the procedure that gives the number after the Commit, because at
that moment we are completely sure that everything will remain in the
database?

15



0 Fight X
Structure | % Web Form Events | Variables | Patterns

1F|FlightId ReturnFlightId() on Beforelnsert;
Server Database
r("The seat quantity mustn't be less than eight”)
if FlightCapacity < 8
on AfterlLevel
Level FlightSeatChar;

[0 Fught
§ rughua
A FlightDepartureArportid
Sy FlightDepartureAirporthiame
' FlightDepartureCountryld
' FlightDepartureCountrylome

Sy FightDepsrtureCiyd - on Beforelnsert ——

' FlightDepartureCtyliame

S FlightArrvalairportid
S¢ Flightarrvalairportiame
Sy FlightArrvalCountryld

e FlightArrhvalCountryName

S¢ FlightArrvaiCityld
Sw FlightArrivaiCityName
* FightPrice

* FlightDuscountPercentage
» Artineld

v ArineName

¢ ArlineDiscourtPercentsge
2. FightFmalPrice

A, FlightCapacity

Seat
¥ Fightseatia
" —— COMMIT

{P Fiightseattocaon

Hmmmm, no, that's too late! Why? Because Flightld is an attribute of the
header. The last moment to assign it a value is the one immediately before
the record is inserted in the database, and that moment is Beforelnsert.
We no longer need to condition to If Insert, because the triggering event
already takes into account that it will only happen if we want to insert data:

16



@ Fiight x + =X

“ C @ trialapps3.genexus.com/Id5d977a49afaf027c2fccble96edebb1/flight.aspx ® % O f§ :
Caonane
Recent Flight
Flight
Id g

Departure Airport Id

Departure Airport Name

Departure Country Id 0

Departure Country Name

Departure City Id 0

Departure City Name

Arrival Airport Id

Arrival Airport Name

If we run it, we see that it no longer assigns a number to the ID right away.
It doesn't even do that when we enter lines.



Browser . Server Database
Flightld = ReturnFlightId() on Beforelnsert;
( Flight table
\ on Beforelnsert
o=

Flightld=X ———

FlightSeat table

Only after we confirm, all this information goes to the server and it starts
executing all the referential integrity controls and rules as it validates each
field. When it finishes with those of the header, after having validated
everything, the Beforelnsert event occurs. This is where it assigns the
number, and immediately afterwards the record is inserted in the Flight
table. Then it goes on to validate each field in line 1, and inserts it; next,
those in line 2 and inserts it and so on.

Note that the rule will not be triggered before every line is recorded. This
rule will only be triggered in the Beforelnsert of the header! Why? Because
in the rule we defined there is an attribute that belongs to the header.

If we define a rule to which we also add the on Beforelnsert triggering
event, but unlike the previous example, the rule contains a reference to at
least one attribute of the second level of the transaction, it will be
associated with the second level. Therefore, it will be executed
immediately before each instance corresponding to the second level of
the transaction is physically saved.

So, we could say that even though the name of the event, Beforelnsert, is

the same, they are actually two different ones: either it is the Beforelnsert
of the header or the one that applies to the lines.

18



TH Fught > <
P Fughtid
Sa FlightDepartureAirportid

Sy FlightDepartureAirportName / N\
Sy FlightDepartureCountryld / \
Sy FlightDepartureCountryName Seat / i [ ) \
[ - — |

Sy FlightDepartureCityld / i \
S¢ FlightDepartureCityName Seat Id Seat Char Seat Location | \‘
Sa FlightArrivalairportid | | .
Sy Flightarrvalairporthame X 1 A v{| Window v Window
S¢ FlightarmvalCountryld . s il o (
Se FlightArmvalCountryName AL v VWEONSY // \ Y
S¢ FlightArrivalCityld 0 A vi Window v ( ABC DEF Middle
S¢ FlightArrivalCityName C N
* FlightPrice 0 A v Window ‘ ! ! ! ! ! !
® FlightDiscountPercentage ) i
2 Airlineld 0 A v v ‘[/ [EliE]=] ] ] Aisle
¥ AirlineName "\ r
) eee wee
&, FlightFinalPrice Em|| aen (
/a, FlightCapacity P NN Y - - Y

Sea (eee o88

? Fightseatid [ [T

§ FughtseatChar 0 5 (0 /3 mE| (]

Y’ FlightSeatLocation

Let's see an example of Beforelnsert for the lines:

Suppose we want the value for the FlightSeatLocation attribute, rather
than being chosen by the user working with the transaction, to be
assigned by a rule, which sets it to “Window” when the value of the
FlightSeatChar attribute is A or F, "Medium” when the value of the
FlightSeatChar attribute is B or E, and “Aisle” when its value is C or D.

Let's make it clear that we could solve this without using triggering events,
and it would even be better, because the user would immediately see on
the screen the value of the SeatlLocation, as the rule would be executed
immediately on the client. However, just to understand the triggering
moment, imagine that we would be interested in making this assignment
only if we were sure that the seat was going to be entered on the flight;
that is, immediately before inserting the line.

19



4 Flight NoAccept(FlightSeatLocation);
¥ rightic
Sa FlightDepartureAirportld a
FlightDepartureAirporthame wle Location
FlightDepartureCountryld
FlightDepartureCountryName
FlightDepartureCityld

FlightDepartureCityName Name Descnption Value Add
FlightArrivalAirportid Empty Empty E R

lemove
FightAmivalrportiiome Window Window w

FlightarrvaiCountryld
FlightArrvalCountryName
FlightArrvalCityld Aisie Alsle A
FlightarrivalCityName

Middle Middle M Edit

AL LR

FlightPrice
FlightDiscountPercentage
Airlineld

s

AlrlineName
AirlineDiscountPercentage
FlightFinalPrice
FlightCapacity

Seat

¥ Fightseatid

P Fughtseatchar

)y’ FlightSeatiocation

PP R X w

OK

Cancel

We'll use the NoAccept rule to prevent the user from choosing the
location, add the value "Empty” to the Location domain,

20



&0 Flight* X

Structure | % Web Form | Rules WF_vents Variables | Patterns

1= FlightSeatLocation = Location.Window
2 if FlightSeatChar = 'A' or FlightSeatChar = 'F'
3 on Beforelnsert;
4
55 FlightSeatlLocation = Location.Middle
6 if FlightSeatChar = 'B' or FlightSeatChar = 'E'
7 on Beforelnsert;
9 FlightSeatLocation = Location.Aisle
10 if FlightSeatChar = 'C' or FlightSeatChar = 'D’
11 on Beforelnsert;
12
14 2 NoAccept(FlightSeatLocation);
1S
162 FlightId = ReturnFlightId() on Beforelnsert;
1’7
18 @ Error("The seat quantity mustn't be less than eight")
19 if FlightCapacity < 8
20 on AfterLevel

1 Level FlightSeatChar;

and create the following rules.

21



Flight x +

(¢ @ trialapps3.genexus.com/ld5d

Discount Percentage

)77a49alaf027c2fccbfe96edebb11/flight

Airline Id
Airline Name TAM
Airline Discount Percentage 0
Final Price 4000.00
Capacity 0
Seat

Seat Id Seat Char Seat Location
X A v Emply
X B v Empty
X 1 C v Empty
x D v Empty
X 1 E v Emply
X 1 3 v Empty
X 2 A v Empty
X 2 B v Emply

Server Database

on Beforelnsert ———

FlightSeatLocation = Location.Window
if FlightSeatChar = ‘A’ or FlightSeatChar = 'F’
on Beforelnsert;

FlightSeatLocation = Location.Middle
if FlightSeatChar = '8' or FlightSeatChar = 'E'
on Beforelnsert;

FlightSeatLocation = Location.Aisle
if FlightSeatChar = 'C’ or FlightSeatChar = ‘D'
on Beforelnsert;

Let's insert a new flight from Guarulhos airport to Charles de Gaulle
airport, with a price of 4000, no discount and TAM airline. Let's go register
the seats now:

We'll complete the first row, and two more seats in the second row.

Before the physical insertion of each line, the corresponding rule will be

executed, according to the FlightSeatChar we have chosen.

So, the transaction on the server will validate the data of the first line,
where SeatlLocation will be empty and the next step will execute the first
rule, because SeatChar is A, and then it will change the SeatlLocation to

Window, and immediately save the line in the table.

22



c

x +

@ trialapps3.genexus.com/ld5d977a49afaf027c2fccbie96edebb1/flight.aspx
Alrline Name TAM
Airline Discount Percentage ]
Final Price 4000.00
Capacity 8
Seat

Seat Id Seat Char Seat Location

X 1A Window
X 1B Middle
X 1C Alsle
FlightSeatLocation = Location.Window
X 10 Alsle if FlightSeatChar = 'A" or FlightSeatChar = 'F’
on M
X 1E Middie FlightSeatLocation = Location.Middle
if FlightSeatChar = 'B" or FlightSeatChar = 'E’
X 1F Window on BeToreiasert;
x 2A Window FlightSeatLocation = Location.Aisle
if FlightSeatChar = 'C' or FlightSeatChar = "D’
X 2B Middle on w

0 A ~ Emply

on Afterlnsert?
0 A v Emply

0 A v Emply

Then it will do the same with the second line: it will validate all the fields -
SeatChar will have an Empty value-, and then it will execute the
corresponding Beforelnsert rules, which in this case will be the second
one, changing the value of FlightSeatLocation to Middle, and will
immediately save the second line in the FlightSeat table. And so it will
continue with the other lines.

We can see that the location was correctly assigned.

But... could we have conditioned these rules to on Afterinsert?
Let’s make this change in GeneXus, and see what happens in this case:

23




x +

(¢ @ trialapps3.genexus.com/Id5d977a49afaf027 c2fccbfe96edebb11/flight.aspx

Seat
Seat Id Seat Char Seat Location

X 1A Window

x 18 Middie

X 1C Alsle Server Database

X 10 Alsie

X 1E Middle

X 1F Window
—On

X 2A Window

X 28 Middle

X 3A Empty o A
: : A!«dm«l

0 A v~ Empy "
0 A v Emply
0 A v Empty
0 A v Emply

0 A v Empty

i 2o

Let's change the flight we've just created, and add a new seat to it:
3A

Now let's see how the flight looks: The seat we've just registered has an
empty location! Why?

Because the triggering event on Afterinsert is executed after the record
has been saved in the corresponding table, which is already too late to
assign a value to an attribute.

As mentioned before, the last available moment to assign values is
Beforelnsert, before the header or each line have been saved.



GeneXus

Object(attLevell) on Afterinsert;

Object(attLevell, attLevel2) on Afterinsert;

So, we could use on Afterinsert if we needed, for example, to call another
object from the KB only by sending it the header or line identifier for that
object to go to the corresponding table (that of the header or the line) and
there find it (the header or the line) and extract from there all the other
information it needs from the record to do whatever it has to do with it. To
do so, we must be sure to call that object after inserting the header or line,
as appropriate, on Afterlnsert.

25



PrintFlight(Flightld) on Afterinsert;

| |
—— COMMIT

So, if we wanted to print a list with the details of a flight every time a new
one is inserted, would we use on Afterinsert?

We could, but here the procedure will only be able to print the header
data, because the lines have not been manipulated at all, let alone
inserted. They don't exist yet in the seating table. If that didn't matter to us,
because the PrintFlight procedure would only print data from the flight
header, it would still be a bad idea to invoke it on Afterinsert, because we
must take into account that at that moment the data is still not secure in
the table, because the Commit has not been executed.

This means that if there was a power failure, or an error in the validation of
any of the following fields, i.e. those of the lines, the recording would be
undone, so the list would have been generated with information that
actually no longer exists.

26



PrintFlight(Flightld) on AfterComplete;

]

— COMMIT
on AfterComplete

To make sure we are working with information that is already secure in the
database, we have the on AfterComplete event, which takes place after
the Commit.

In this case, it will go to the Flight table to find the record corresponding to
the sent Flightld, and to the FlightSeat table to find all the records of that
Flightld, which are all its entries.

27



PrintFlight(Flightld) on AfterLevel Level FlightSeatChar;

on AfterLevel
— COMMIT
on AfterComplete

What would happen if we invoked on AfterLevel of an attribute of the
lines?

This will happen immediately before the Commit, so the records will be
saved in the tables but not yet validated. So, if when you finish printing the
flight information there is a power outage and the Commit has not been
performed, the header and lines will be removed from the database.

28



1) Fight
§ rughud
Sa FlightDepartureAirportid
Sy FlightDepartureAirporthame
Sy FlightDepartureCountryld
Sy FlightDepartureCountryName
Citionr ) Sy FlightDepartureCityld
Sy FlightDepartureCityName
Sa FlightArrivalAirportid
Sy FlightArrivalAirporthame
Sy FlightArrivalCountryld
Sy FlightArrvalCountryName
Sy FlightArrivaiCityld
Sy FlightArrivalCityName
FlightPrice
FlightDiscountPercentage
Airlineld
AirlineName

AirlineDiscountPercentage
FlightFinalPrice
FlightCapacity
seat
—p  FlightSeatid
— ] FlightSeatChar

(P FiightSeatLocation

bk = % e

PrintFlight(Flightld, FlightSeatld, FlightSeatChar) on AfterComplete;

Only the header attributes are available in
the on AfterComplete triggering event.
— COMMIT

on AfterComplete

Now suppose the following rule was declared:

What FlightSeatld and FlightSeatChar values would GeneXus send, if there
were N seats on the second level? This rule doesn't make sense, it is
functionally incorrect.

At the AfterComplete moment, the values of the header attributes are still

in memory, unlike the attributes of the second level, whose values were
lost because we already left it.

29



Rule Triggering Events

VALIDATE the header
On Beforelnsert / BeforeUpdate / BeforeDelete
SAVE the header
On Afterinsert / AfterUpdate / AfterDelete
'VALIDATE the line
:;Z::h On Beforelnsert / BeforeUpdate / BeforeDelete
line SAVE the line

\“ _On Afterinsert / AfterUpdate / AfterDelete

On AfterLevel Level Line attribute

On BeforeComplete
COMMIT
On AfterComplete

This video shows examples of Beforelnsert and Afterinsert moments,
which will be triggered only if we are inserting records, but we also have
BeforeUpdate and AfterUpdate in case we are modifying them, and
BeforeDelete and AfterDelete, in case we are deleting them.

There are other triggering moments that will not be studied in this course.
If you are interested, you can learn more about this topic in the next level
course.

30



GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

31



