
Relations between entities of reality



In several examples of our travel agency, we see that the actors of
reality are related in different ways; for example, when an attraction
belongs to a category and, in turn, this category can be the category of
many attractions.



We've seen that when we design transactions, we can represent these
relationships by including the attributes of one transaction in
another.

Attractions

CATEGORY

Monument

Museum

Famous Landmarks

Attraction
AttractionId

AttractionName

CountryId

CountryName

CategoryId

CategoryName

AttractionPhoto

CityId

CityName

CategoryId

CategoryName

Category



The agency's staff tells us that they work with suppliers, who from time
to time offer them visits to tourist attractions in different parts of the
world.

Each supplier offers many tourist attractions, but each attraction is
managed by a single supplier.

SUPPLIER ATTRACTION
1 many



To represent this reality, we will create the Supplier transaction, where
we will record suppliers...

We select File New Object we call it Supplier . and add these
attributes:

SupplierId as identifier, SupplierName to store the supplier's name and
SupplierAddress to save its address.

Using the transaction diagram object, let's look at the relationship
between suppliers and attractions. We select New Object, of Diagram
type, and drag the Attraction and Supplier transactions from here to the
diagram. Note that we haven't established any relationship between
these two actors yet. We save.

New Supplier transaction

Relationship between
Attraction and Supplier?



Since a tourist attraction has a single supplier that offers it, we will
include the supplier identifier in the Attraction transaction structure. To
do this, we open this transaction and add the SupplierId attribute. We
also add the SupplierName attribute to be able to show the supplier's
name in the attractions screen.

Requirement: each tourist attraction is offered by a unique supplier. 



Another Look at the Relationship between Suppliers and Attractions

Transaction diagram (not
table diagram)

We open the diagram again.

Now there's an arrow whose simple head is pointing to Supplier, and
whose double head is pointing to Attraction. This indicates that an
attraction has a single supplier and that a supplier can offer many
attractions.

In sum, if we add the identifier attribute of a transaction to another
transaction (which, as we have seen, will be a foreign key), a 1 to many
relationship (also called 1 to will be established.



In it, the side of the relationship is where the foreign key is
located.

Now, if we examine the tables generated by GeneXus starting from this
transaction design, we can see that based on the Supplier transaction, a
SUPPLIER table will be created with the same structure as the
transaction.

Tables Created by GeneXus Based on the Implemented Design

Transaction

Table



Based on the structure of the Attraction transaction, GeneXus creates 
an ATTRACTION table with the following structure.

If we compare the structure of the ATTRACTION table to that of the 
Attraction transaction, we see that the CountryName, CategoryName, 
CityName and SupplierName attributes are not included in the table 
because they are inferred attributes. 

Table

Transaction



As we've seen before, since they are in the extended table of the
ATTRACTION table, their value can be retrieved from the tables where
they are physically stored.

This is the most common way to represent a 1 to many relationship
between two actors of reality; that is to say, between two entities in our
system.



However, there are other cases of 1 to many relationships where we will
use another type of representation.

Remember flights, where one flight has many seats and each seat is
assigned to a flight; that is to say, a 1 to many relationship.

FLIGHT SEAT
1 many

Seat

Flight



We will open the Flight transaction structure to see how to represent
this relationship...

In this case, Seat is included as a second level of the Flight transaction.

So, how is this 1 to many relationship different from the 1 to many
relationship that we saw between Attractions and Suppliers?

Another Way to Model the 1 to N Relationship



Why don't we represent both cases in the same way (with the same
transaction design)?

Note that the existence of seats doesn't make sense unless they are in a
flight; that is to say, it doesn't make sense to consider a seat without
always relating it to the flight it belongs to

On the other hand, an attraction may not have a supplier that offers it,
and it would nonetheless exist on its own

The other difference is that when we're entering the details of a flight,
we're also entering the details of its seats (just like when we enter an
invoice with lines, all the information is entered at once). On the other
hand, the Suppliers and Attractions details don't have to be entered all
at the same time.

An entity such as seats, which only makes sense if it's represented in
relation to another entity (in this case, flights), is called a weak entity.

Attraction

weak entity

Seat

Supplier Flight



This type of weak 1 to N relationship is usually represented with a single
two-level transaction, where the weak entity is in the second level. It is
different from the 1 to N relationship of Suppliers and Attractions, where
we created two transactions and set as foreign key the primary key of
the other.

1 to many 1 to many (weak)



The weak 1 to N relationship can also be represented with two
transactions (it is exactly the same for data modeling purposes), where
part of the primary key of the seats transaction is the FlightId attribute.
More specifically, this attribute will be the foreign key of the Flight table.
There lies the difference between a strong and a weak entity. Note that
since FlightId is part of the primary key, it is not possible to set a flight
seat, such as 2 A Window, without giving a value to the flight, FlightId.
On the other hand, it is possible to enter an attraction here without
indicating its supplier, if that attribute has the Nullable property set to
Yes.

So far, we've seen 1 to many relationships, but they don't always fit the
reality that we want to represent.

1 to many 1 to many (weak)



For example, suppose that the travel agency tells us that their reality
has changed.

Each supplier offers many tourist attractions (as before), but each
attraction can be managed by SEVERAL suppliers (and not only one, as it
has been the case until now).

That is to say, the relationship between Suppliers and Attraction is no
longer 1 to but many to many .

How do we represent this in GeneXus?

Many many relationship

many many

Supplier Supplier

Attraction



By using two transactions, one for each entity. In addition, one of them
is added as the second level of the other. This is done by taking into
account the way in which data will be entered: for each supplier, all its
tourist attractions will be entered

How to Represent an M to N Relationship

Attraction
SUPPLIER

Supplier

Attraction



Attraction

Supplier

Supplier

How to Represent an M to N Relationship

or... for each attraction, all its suppliers will be entered. 



In this case, the agency has asked that users enter all the attractions of
each supplier.

We will implement this in GeneXus.

To do so, we open the Attraction transaction and remove the SupplierId
and SupplierName attributes, and save.

Now we open the Supplier transaction, where we add a second level
and add these attributes: AttractionId (note that when we type a
primary key attribute that begins with the level name is
automatically changed to Attraction).

Also, we add Attraction Name and AttractionPhoto.

Modelling the M to N relationship in GeneXus



Let's see how this relationship looks by opening the diagram of the
Attraction and Supplier transactions.

Now there's a double-headed arrow in each end of the relationship,
which indicates that the relationship is to ; that is to say,
one attraction is offered by many suppliers, and one supplier offers
many attractions.

A look at the relationship established between suppliers and attractions



Let's take a look at the tables created by GeneXus based on the previous
design...

There's an ATTRACTION table, a SUPPLIER table and a SUPPLIERATTRACTION
table.

Tables Created by GeneXus Based on the Implemented Design



We create a new diagram object and drag the three tables to the
diagram...

Note that, in this case, GeneXus creates a table for each transaction
included in the many to many relationship (ATTRACTION and
SUPPLIER), but it also creates a third table called SUPPLIERATTRACTION
to establish the relationship.

Looking at the structure of this third table, we notice that only the
identifier attributes of the other two tables are included.

Therefore, every time that GeneXus establishes a many to many
relationship, it will be represented in the database with three tables; one
for each entity involved and a third one with the identifiers of both
tables. This third table may have its own attributes, such as, for
example, the date in which the supplier started to offer that attraction.

Relationship between tables: M to N



If we open the diagram again, we see the attribute in the relationship
table.

The many to many relationship between Attraction and Supplier has 
been divided into 2 one to many relationships, using the 
SUPPLIERATTRACTION table to establish the relationship between the 
previous ones.

Finally, let's update our KB in GeneXus Server...

And reorganize it to have the tables created...

Relationship between tables: M to N



So far, we've seen that using transactions and their attributes we can 
represent different relationships between the actors of our reality.

CATEGORY ATTRACTION
1 many

ATTRACTION SUPPLIER
many many

FLIGHT

SEAT

many

1



For example, when the travel agency needs to associate with each
customer the bank account opened to pay for the services hired.

Another scenario of 1 to 1 relationships was mentioned when we talked
about subtypes. It was an example of specialization: when an entity is a
particular case of another.

Now, let's move on to the following topic.

CUSTOMER BANKACCOUNT
1 1

1 1 1

1 1 1

CUSTOMER EMPLOYEEPASSENGER

PERSON



training.genexus.com
wiki.genexus.com


