Relations between entities of reality

GeneXus

Attraction Information

Name Eiffel Tower

General

Eiffel Tower

ntry Name France

UPDATE DELETE

In several examples of our travel agency, we see that the actors of
reality are related in different ways; for example, when an attraction
belongs to a category and, in turn, this category can be the category of
many attractions.

CATEGORY

Monument

Museum

Famous Landmarks

Category

Categoryld
CategoryName

p
Attraction
9 Attractionld

AttractionName
Countryld
CountryName
Categoryld
CategoryName
AttractionPhoto
Cityld

CityName

Attractions

We've seen that when we design transactions, we can represent these
relationships by including the attributes of one transaction in

another.

SUPPLIER .

ATTRACTION

The agency's staff tells us that they work with suppliers, who from time
to time offer them visits to tourist attractions in different parts of the

world.

Each supplier offers many tourist attractions, but each attraction is

managed by a single supplier.

New Supplier transaction

@ Supplier X

I:' = Web Form | Rules | Events | Variables | Patterns

MName Type Description Formula Nullable
= - Supplier Supplier Supplier
? Supplierld Id Supplier Id No
Q SupplierMName Mame Supplier Name Mo
i » supplierAddress Address, GeneXus Supplier Address Mo
;?1 Diagram = X
(" Attraction £ |’ Supplier =
Relationship between § Atractionid 7 Suppliera
R R AttractionMName SupplierName
Attraction and Supplier? Countyld Supplieradress
* CountryMame h
Categoryld
CategoryMame
AttractionPhoto
Cityld
CityName
AttractionAddress

To represent this reality, we will create the Supplier transaction, where
we will record suppliers...

We select File... New... Object... we call it Supplier.... and add these
attributes:

Supplierld as identifier, SupplierName to store the supplier's name and
SupplierAddress to save its address.

Using the transaction diagram object, let's look at the relationship
between suppliers and attractions. We select New Object, of Diagram
type, and drag the Attraction and Supplier transactions from here to the
diagram. Note that we haven't established any relationship between
these two actors yet. We save.

Requirement: each tourist attraction is offered by a unique supplier.

@ Attraction X

I:l = Web Form | Rules | Events | Variables | Patterns

Name Type Description Formula Mullable
EI- Attraction Attraction Attraction
-~ § Attractionld Id Attraction Id No
P AttractionMame Mame Attraction Name Mo
- A Countryld 1d Country Id Mo
- o CountryName MName Country Mame
- A Categoryld 1d Category Id Yes
- o CategoryMame MName Category Name
@ AttractionPhoto Image Attraction Photo Mo
- A CityId 1d City Id Yes
- o CityMName Mame City Mame
- A Supplierld 1d Supplier Id Mo
- o SupplierMame Mame Supplier Name

Since a tourist attraction has a single supplier that offers it, we will
include the supplier identifier in the Attraction transaction structure. To
do this, we open this transaction and add the Supplierld attribute. We
also add the SupplierName attribute to be able to show the supplier's

name in the attractions screen.

Another Look at the Relationship between Suppliers and Attractions

& Afraction X g5 Diagram2 X

[Supplier

? Attractionld ? Supplierld
AftractionMame SupplierName Transaction diagram (not
Countryld SupplierAddress table diagram)

CountryMame
Categoryld

CategoryName
AttractionPhoto
Cityld
CityName
Supplierld
Supplierhame

We open the diagram again.

Now there's an arrow whose simple head is pointing to Supplier, and
whose double head is pointing to Attraction. This indicates that an
attraction has a single supplier and that a supplier can offer many
attractions.

In sum, if we add the identifier attribute of a transaction to another
transaction (which, as we have seen, will be a foreign key), a 1 to many
relationship (also called “1 to N”) will be established.

Tables Created by GeneXus Based on the Implemented Design

ﬁ Supplier X
[structure | indees |
Name Type
B-%z pplier Structure
? Supplierld Id
Supplieriame Mame

- SupplierAddress

@ Supplier X

Address, GeneXus

Description

Supplier Id
Supplier Name

Supplier Address

I:l = Web Form | Rulesl Events | Variables | Patterns |

Name

EI- Supplier
: ? Supplierld

..... @ supplierName

- SupplierAddress

Type

Supplier

Id

Mame

Address, GeneXus

Description
Supplier

Supplier Id
Supplier Mame
Supplier Address

Formula

Formula Mullable

Transaction

Mo

~

In it, the “many” side of the relationship is where the foreign key is

located.

Now, if we examine the tables generated by GeneXus starting from this
transaction design, we can see that based on the Supplier transaction, a

SUPPLIER table wiill
transaction.

be created with the same structure as the

@ Aftraction X v,
[stucture | inderes |
Name Type Description Formula
El @ Attraction Structure Attraction
¢ Attractionld 1d Attraction Id
AttractionMame Name Attraction Name
Countryld d Country Id
Categoryld 1d Category Id Table
AttractionPhoto Image Attraction Photo
L@ Cityld d City Id
i » Supplierld d Supplier Id
@ Aftraction X v

l:l = Web Form | Rules | Events | Variables | Patterns |

Name Type Description

= @EAth'action Attraction Attraction
¥ attractionld 1d Attraction Id
p AttractionName MName Attraction Name
- A Countryld Id Country Id
- o _CountryMName MName Country Name
- A Categoryld Id Category Id
- o CategoryMame MName Category Mame
g AttractionPhoto Image Attraction Photo
- A Cityld Id City Id
-~ @ CityName Name City Name
- A Supplierld Id Supplier Id
- @ _SupplierName Mame Supplier Mame

Formula Nullable

No
No
Mo

Transaction

Mo
Yes

Mo

Based on the structure of the Attraction transaction, GeneXus creates
an ATTRACTION table with the following structure.

If we compare the structure of the ATTRACTION table to that of the
Attraction transaction, we see that the CountryName, CategoryName,
CityName and SupplierName attributes are not included in the table

because they are inferred attributes.

-

Supplier

3|

Supplierld
SupplierMame
SupplierAddress

=

|

? Attractionld
AttractionMame
Countryld
Categoryld
AttractionPhoto
Cityld
Supplierld

i

i

HM

¥

Cityld

? Countryld
? CityName

¥

'

Category

£

b Categoryld
CategoryMame

[

2l

‘ ? Countryld

CountryMame

As we've seen before, since they are in the extended table of the
ATTRACTION table, their value can be retrieved from the tables where
they are physically stored.

This is the most common way to represent a 1 to many relationship
between two actors of reality; that is to say, between two entities in our
system.

Seat

FLIGHT | -« - SEAT

O b
g 000000000000 [] 00000000000 DR
4_'——'—T J

[e]e)) [e]e)
Flight

However, there are other cases of 1 to many relationships where we will
use another type of representation.

Remember flights, where one flight has many seats and each seat is
assigned to a flight; that is to say, a 1 to many relationship.

Another Way to Model the 1 to N Relationship

& Flight X v
I:I % Web Form | Rules ‘ Events ‘ Variables | Patterns |
Name Type Description Formula Nullable
& B
¥ Fightid d Flight 1d No
--5p FlightDepartureAirportld Id Flight Departure Airport Id No
-- S FlightDepartureAirportiame Mame Flight Departure Airport Mame
-- S FlightDepartureCountryld Id Flight Departure Country Id
-- S FlightDepartureCountryMame Mame Flight Departure Country Name
--Sp FlightDepartureCityld Id Flight Departure City Id
--Sp FlightDepartureCityName Mame Flight Departure City Name
-- 5 FlightArrivalAirportld Id Flight Arrival Airport Id No
-~ S FlightArrivalAirportName Mame Flight Arrival Airport Name
-- S FlightArrivalCountryld Id Flight Arrival Country 1d
-- 5 FlightArrivalCountryMame Mame Flight Arrival Country Name
--Sp FlightArrivalCityld Id Flight Arrival City Id
--Sp FlightArrivalCityName Mame Flight Arrival City Name
- # FlightPrice Price Flight Price No
- ® FlightDiscountPercentage Percentage Flight Discount Percentage No
Airlineld d Airline Id No
AirlineName Name Airline Name
AirlineDiscountPercentage Percentage Airline Discount Percentage
FlightFinalPrice Price Flight Final Price FlightPrice *(1-AirlineDiscountPer. ..
FlightCapacity Mumeric{4.0) Flight Capacity count(FlightSeatocation)

Seat Seat Seat

9 Flightseatld d Flight Seat 1d No
p FlightSeatChar SeatChar Flight Seat Char No
i @ FlightSeatLocation Location Flight Seat Location No

We will open the Flight transaction structure to see how to represent
this relationship...

In this case, Seat is included as a second level of the Flight transaction.

So, how is this 1 to many relationship different from the 1 to many
relationship that we saw between Attractions and Suppliers?

Attraction

@) A —
g 000000000000 (] 00000000000 DR
_;——'__T J

[e]8) . .
Supplier Flight

o0

Why don't we represent both cases in the same way (with the same
transaction design)?

Note that the existence of seats doesn't make sense unless they are in a
flight; that is to say, it doesn't make sense to consider a seat without
always relating it to the flight it belongs to...

On the other hand, an attraction may not have a supplier that offers it,
and it would nonetheless exist on its own...

The other difference is that when we're entering the details of a flight,
we're also entering the details of its seats (just like when we enter an
invoice with lines, all the information is entered at once). On the other
hand, the Suppliers and Attractions details don't have to be entered all
at the same time.

An entity such as seats, which only makes sense if it's represented in
relation to another entity (in this case, flights), is called a weak entity.

Qe

= EE_tHd’\!
[9 Suppiertd | § ronid

- supplierName S FightDepartureAirportid

& SupplierAddress . :zzzt::’:xr
Sy FightDepartureCountryName
S, FightDepartureCityld

Sy FightDepartureCityName

Sp FightArrivalArportid

Sy FhghtArrivalArpor tame

S FightArrivaiCountryld

Sy FightArrivaiCountryName

5 FightArrivalGityld

£1/E] Attracton 5:' :xzwm
) ? Attract_onxd ! G icstiags
D AttractionName ey
2 CountryId ArineName
e CountryName & 000000000000 (] 00000000000 DR ArlineDiscountPercentage
- A Categoryld — =) FightFinaPrice
¢ CategoryName FightCapadty
[2a] AttractionPhoto = Seat
A Cityld ¥ rFightseatid
2 CityName 1 to many 1 to many (weak) § Rohtsestcher
- A Supplierld P FightSeattocation
upplierName

This type of weak 1 to N relationship is usually represented with a single
two-level transaction, where the weak entity is in the second level. It is
different from the 1 to N relationship of Suppliers and Attractions, where
we created two transactions and set as foreign key the primary key of
the other.

. Supplier

? Supplierld

- ‘P SupplierMame
» SupplierAddress

DAttract:on
¥ Attractionid
Q AttractionName
& Countryld
- # CountryName
A Categoryld
¢ CategoryName
{2a] AttractionPhoto
2 Cityld
¢ CityName
2 Supplierld
¥ SupplierName

=& Flight

i 000000000000 (J 00000000000 DR
J)

50—

[¢9)

9 Flighttd

Sa FlightDepartureAirportld

S¢ FlightDepartureAirportName
S¢ FlightDepartureCountryld
S¢ FlightDepartureCountryName
S¢ FlightDepartureCityld

S¢ FlightDepartureCityName

- Sa FlightArrivalAirportld

S¢ FlightArrivalAirportName
S¢ FlightArrivalCountryld
S FlightArrivalCountryName
S¢ FlightArrivalCityld

S¢ FlightArrivalCityName

® FlightPrice

® FlightDiscountPercentage
2 Airlineld

¥ AirlineName

¢ AirlineDiscountPercentage
/&, FlightFinalPrice

2_ FlightCapacity

=] D FlightSeat

9 Flightid

9 FlightSeatld

9 FlightseatChar
P FlightSeatLocation

The weak 1 to N relationship can also be represented with two
transactions (it is exactly the same for data modeling purposes), where
part of the primary key of the seats transaction is the Flightld attribute.
More specifically, this attribute will be the foreign key of the Flight table.
There lies the difference between a strong and a weak entity. Note that
since Flightld is part of the primary key, it is not possible to set a flight
seat, such as 2 A Window, without giving a value to the flight, Flightid.
On the other hand, it is possible to enter an attraction here without
indicating its supplier, if that attribute has the Nullable property set to
Yes.

So far, we've seen 1 to many relationships, but they don't always fit the
reality that we want to represent.

“Many” to “many” (M to N) relationship

Supplier

F

Attraction

many

Supplier

For example, suppose that the travel agency tells us that their reality
has changed.

Each supplier offers many tourist attractions (as before), but each
attraction can be managed by SEVERAL suppliers (and not only one, as it
has been the case until now).

That is to say, the relationship between Suppliers and Attraction is no
longer “1 to many” but “many to many”.

How do we represent this in GeneXus?

How to Represent an M to N Relationship

4 :
Supplier B Attraction (A

Attraction (A

By using two transactions, one for each entity. In addition, one of them
is added as the second level of the other. This is done by taking into
account the way in which data will be entered: for each supplier, all its
tourist attractions will be entered...

How to Represent an M to N Relationship

Supplier |

»]

4 .
Attraction

Supplier

or... for each attraction, all its suppliers will be entered.

Modelling the M to N relationship in GeneXus

@ Aftraction X

A4
l:l < Web Form ‘ Rules | Events | Variables | Patterns |
Name Type Description Formula Nullable
& B
% ttractionld 1d Attraction Id No
p AttractionName MName Attraction Name No
2 Countryld Id Country Id No
[CountryMame Mame Country Mame
- A Categoryld Id Category Id feg
- o CategoryMame Mame Category Name
Q AttractionPhoto Image Attraction Photo No
- A Cityld Id City Id ‘fes
o CityMName Mame City Name
@ Supplier X A
|:| % Web Form | Rules | Events | Variables | Patterns |
Name Type Description Formula Mullable
S B
? Supplierld 1d Supplier Id Mo
p SupplierName Mame Supplier Name Mo
- » SupplierAddress Address, GeneXus Supplier Address Mo
= Attraction Attraction Attraction
- § atractionld 1d Attraction Id Mo
- o AttractionMame MName Attraction Mame
¥ AttractionPhoto Image Attraction Photo

In this case, the agency has asked that users enter all the attractions of

each supplier.

We will implement this in GeneXus.

To do so, we open the Attraction transaction and remove the Supplierld
and SupplierName attributes, and save.

Now we open the Supplier transaction, where we add a second level
and add these attributes: Attractionld (note that when we type a
primary key attribute that begins with “Attraction”, the level name is
automatically changed to Attraction).

Also, we add Attraction Name and AttractionPhoto.

A look at the relationship established between suppliers and attractions

@ Supplier X ﬁ Diagram2 X

Attraction Supplier

4 Attractionld 4 Supplierld
AttractionName SupplierName
Countryld SupplierAddress
CountryName “_JAttraction
Categoryld ? Attractionld
CategoryName AttractionName

AttractionPhoto AttractionPhoto
Cityld b
CityName

Let's see how this relationship looks by opening the diagram of the
Attraction and Supplier transactions.

Now there's a double-headed arrow in each end of the relationship,
which indicates that the relationship is “many” to “many”; that is to say,
one attraction is offered by many suppliers, and one supplier offers
many attractions.

Tables Created by GeneXus Based on the Implemented Design

23z Tables
@ Airline
% Airport
@ Attraction
% Category
@ Country
% CountryCity
% Customer
R Flight
P FlightSeat

@ Supplier
% Supplierittraction

Let's take a look at the tables created by GeneXus based on the previous
design...

There's an ATTRACTION table, a SUPPLIER table and a SUPPLIERATTRACTION
table.

Relationship between tables: M to N

@ Supplier X ;?], Diagramd = X A4

. A

AttractionMName Supplierlame
Countryld SupplierAddress
Categoryld 4

AttractionPhoto

Cityld
. 4 ¥
SupplierAifraction (2 |

9 Attractionld ‘ § Supplierld ‘

Supplierld
? Attractionld

We create a new diagram object and drag the three tables to the
diagram...

Note that, in this case, GeneXus creates a table for each transaction
included in the many to many relationship (ATTRACTION and
SUPPLIER), but it also creates a third table called SUPPLIERATTRACTION
to establish the relationship.

Looking at the structure of this third table, we notice that only the
identifier attributes of the other two tables are included.

Therefore, every time that GeneXus establishes a many to many
relationship, it will be represented in the database with three tables; one
for each entity involved and a third one with the identifiers of both
tables. This third table may have its own attributes, such as, for
example, the date in which the supplier started to offer that attraction.

Relationship between tables: Mto N

@ Supplier® X ;?; Diagramd * X AT

=z Web Ferm | Rules | Events | Variables | Patterns |

ST YES @ Supplier X ﬁ Diagramd X A4
E|- Supplier Supplier

¥ suppliertd Id

Address
Attractio | Supplier
? Attractionld 1d ? Supplierid
¥ AttractionMame Mame SupplierName

¥ AttractionPhoto Image Supplleerress

|’ Suppliuma;m =&

e Supplierld
b4 Attractionld
SupplierdttractionDate

If we open the diagram again, we see the attribute in the relationship
table.

The many to many relationship between Attraction and Supplier has
been divided into 2 one to many relationships, using the
SUPPLIERATTRACTION table to establish the relationship between the
previous ones.

Finally, let's update our KB in GeneXus Server...

And reorganize it to have the tables created...

CATEGORY

ATTRACTION

FLIGHT

SEAT

ATTRACTION

SUPPLIER

So far, we've seen that using transactions and their attributes we can
represent different relationships between the actors of our reality.

CUSTOMER

BANKACCOUNT

PERSON

CUSTOMER

PASSENGER

EMPLOYEE

For example, when the travel agency needs to associate with each
customer the bank account opened to pay for the services hired.

Another scenario of 1 to 1 relationships was mentioned when we talked
about subtypes. It was an example of specialization: when an entity is a

particular case of another.

Now, let's move on to the following topic.

GeneXus’

training.genexus.com
wiki.genexus.com

