

P
ag
e1

 Programming reminders / End of the ticket reservation process

We go back to the diagram to focus on the reservation authorization task, which is carried out

by the customer care manager.

In the diagram, we associate the task Authorize reservation – Customer Care Manager

with the AuthorizeReservation web panel, mapping the relevant data item &ReservationId.

The web panel will show the reservation details and will offer 2 buttons to authorize or reject

it, similarly to what we saw for evaluating the customer.

We click on OK and create a relevant data item &AuthorizeReservation to save the decision

made by the customer care manager.

Now, let’s remember the automatic notifications that we had created.

The task Notify pending authorization is a batch task that will run a procedure in which a

notification is sent to the customer care manager, for example, via email.

In order to make it easier to check this pattern, we will replace the batch task with an

interactive task associated with a web panel that simply shows the notification on screen.

To do so, we open the task's properties, change its Type property to User and associate the

task with the web panel “NotifyPendingAuthorization”.

P
ag
e2

We’ve changed the waiting times to 2 minutes in order to show this behavior in this video, so

we edit the rule property of both timers and enter value 2.

To display the actions caused by timer type events in our inbox, we need to run a program

that triggers the events of timer type; if we don’t run it, these events will not be triggered.

This utility is run from a command line, so we click on Tools, Explore Target Environment

Directory and click on the bin folder.

We open a command window and from the Windows explorer window we drag the executable

file apwftimerdeadlinescheduler.exe. We enter the value 60 and press Enter. In our case,

deadlines will be triggered every 60 minutes.

In addition to the Timer Scheduler utility, we have a Timer Control that is run only once.

The timer scheduler is typically used during the prototyping stage, and the timer control is

 To execute it, you must do the following:

https://wiki.genexus.com/commwiki/servlet/wiki?43454,Timer%20Control

P
ag
e3

used when the workflow is in production, with the operating system features to schedule its

execution.

We go back to GeneXus, run the diagram FlightTicketReservation and move on to the screen

that we were in before.

In the task “Add customer information required for traveling” we click on Send. Note

that we don’t move on to the next step in the diagram because the “Evaluate Customer” task

is pending.

We execute it and see that the web panel screen is opened to evaluate the customer.

We click on the Authorize button and complete the “Evaluate Customer” task. As we can

see, the tasks “Check reservation documents” and “Authorize reservation – Customer

Care Manager” are now pending.

The "Check reservation documents" task also has associated documents because we had set

the Read operation of the visa as a required action.

We run the task and see that the work with documents window is opened. Instead of clicking

on the “Read” button, we close the window and click on Send on the task.

An error message is displayed to indicate that documents still have to be read.

We run the task again, select the Visa document and click on Read.

P
ag
e4

A browser window is opened to show the document, which in this case contains an image of

the visa.

We close the window, complete the task and see that it has been removed from the inbox.

Instead of running the task “Authorize reservation-Customer Care Manager” we will wait

a few minutes.

Note that the task has a clock icon.

We click on the Refresh button of the browser.

P
ag
e5

Two minutes later, the interactive task Notify Pending Authorization is displayed on the

inbox; this is the notification triggered by the timer. Let’s run it to show the notification that

informs us about a pending authorization.

We click on Confirm to close the window, and click on Send to complete the task.

These notifications will be shown every 2 minutes until the manager carries out the task.

Let’s run the notification task again...

Now let’s run the authorization task and click on Authorize.

We complete the task and wait a few minutes...

The regular notifications are no longer displayed because the signal event placed after the task

sent a message to the other signal event and cancelled this notification loop.

P
ag
e6

We go back to the diagram and see that the signal event “Authorized by manager” goes to an

Exclusive Gateway that evaluates if the reservation was authorized or not. To set this decision,

we double-click on the connector that joins the Gateway with the Error End Event “Rejected

by Customer Care Manager” and in the condition editor we type &AuthorizeReservation = False

This error event will inform the FlightTicketReservation process that the reservation validation

process has been canceled because the customer care manager didn't authorize the

reservation. In its properties, we look at the error code that it has assigned.

In the FlightTicketReservation process we have a Signal Error Event that is set as catch and

has the same name.

P
ag
e7

Most importantly, it has the same Error Code, which makes sure that it will capture the event

triggered in the ValidateReservation subprocess. As a result, a notification message will be

sent to the customer.

We go back to the reservation validation subprocess and see that the document revision task

also ends in an Exclusive Gateway. In this case, it evaluates whether the documentation is in

order; otherwise, the task “Add customer information required for traveling” will have to

be carried out again.

When we created the model, we assumed that the interactive task “Check reservation

documents” would be associated with a GeneXus object that would load a relevant data item

with a value that would later be evaluated in the Exclusive Gateway.

However, we’ve seen that the same workflow engine checks that we read the document, since

we had created a Read operation and set it as Required.

Therefore, we don’t need a Gateway to check whether the task has been carried out or not,

because the control is made by the engine itself when we run the task. We are not allowed to

continue if we don't Read this document.

We change the diagram by deleting the Exclusive Gateway “Is the documentation in

order?”; as a result, the task “Check reservation documents” is now connected directly to

the Parallel Gateway.

P
ag
e8

The Parallel Gateway synchronizes all the paths connected to it in the diagram and

waits until all the paths arrive to it to allow the process to continue.

When we run the document control task and review the documents, if the reservation was

authorized by the customer care manager, the Parallel Gateway will allow the flow to continue

and the subprocess will end.

In this case, the validation ended successfully; therefore, the control will return to the

FlightTicketReservation main process.

Upon returning to this process with a successful validation, the customer will be notified that

the reservation was authorized and the ticket reservation process will end.

In the next videos we will make changes to the diagram to meet new requirements made by

the travel agency.

