
………………………………………………………………………………………………………………………..……………………………………………………
1



………………………………………………………………………………………………………………………..……………………………………………………

Parallel Transactions

Let's suppose that we are designing a small application for a company that 
provides technical services at the customers' location. From this application, 
among other things, we will be able to generate the orders for repair requests 
made by customers.

Let's look only at the transactions we're interested in for our example.
We have a transaction to record customers; another transaction to record the 
company's technicians; and a transaction where the materials can be recorded, 
which the technicians use to solve the different issues of clients.

2



………………………………………………………………………………………………………………………..……………………………………………………

RepairOrder Trn

Structure Rules

Then we have this transaction (RepairOrder), where the operator who receives the 
request from the customer will enter all the necessary data to generate the service 
order.
In it, we have as a primary key the RepairOrderId attribute, which has an auto-
numbered data type assigned to it. Each order will have an associated client, so in 
this transaction we have inferred attributes from the Customer table. 
Lastly, we have these other attributes of the transaction. To record the date of 
entry, the type of order (whose data type will be enumerated containing these 
values), the price, a status (whose data type will also be enumerated, and will 
accept the following values), the date scheduled and a description.

Let's look at the rules we entered.

We have a couple of “default” rules and several “noaccept” rules.
In the default rules we assign a value to the attribute that will keep the status of 
the order –in this case “P”, for pending. And in this other case, we will assign 
today's date to the attribute that will save precisely the date of entry of the work 
order.

We also see that this attribute (RepairOrderPrice) of the transaction will be 
calculated from the value entered in this other attribute (RepairOrderType), which 
will record the type of order.
Lastly, we declare a couple of “error” rules.

Let's see this transaction running, from which we enter a repair order.

3



………………………………………………………………………………………………………………………..……………………………………………………

Technician

Status = Assigned

Finish date

Technician observations

Customer observations

Problem solved

Status = Finalized

Repair Order

Operator

Coordinator

Administrative Assistant

List of materials

Order entry and modifications

Now let's suppose that in our reality, after an order is entered, a coordinator must 
assign a technician to it and the materials provided to that technician, in order to 
monitor it. And change its status to assigned.

In addition, when the task is completed by the technician, an administrative 
assistant should be able to assign an end date to the order, enter comments from 
the technician and the customer, record whether the issue was solved or not, and 
change the status of the order to completed.

How can we do this?

4



………………………………………………………………………………………………………………………..……………………………………………………

RepairOrder Trn with all attributes

One option would be to add all these attributes to the transaction, and to 
complete those that we need at every moment.
The transaction would look like this. 

Let's see it at runtime.

As we can see, this solution does not provide a friendly interface for the user, since 
there will always be fields that may not be of interest or may not have to be 
completed. 

For example, when the operator receives the order from the customer and enters 
it for the first time, before it is assigned to a technician, we will see several fields 
that will not be completed. In this case they are relatively few, but if the number 
of attributes is increased this will impact more and more on the users and their 
experience with the system. 
The same happens when the coordinator accesses the transaction, selects the 
order to be modified and so it is changed to Update mode, assigns a technician to 
it and loads the materials. 

As soon as we search for the order and load it on the screen, we will be shown 
attributes that we may not be interested in viewing. Then, to load the materials, 
you will have to leave fields empty in order to complete them later.
Of course, this is not comfortable for entering data. And as we’ve just said, since 
there are few attributes in this example, it doesn't have a great impact. However, 
as the number of attributes increases, since we may need to record more data, the 
input process becomes more complex.

5



………………………………………………………………………………………………………………………..……………………………………………………

When the administrative assistant wants to complete it with the corresponding observations, he will 
need to select the order to work on, switching the transaction to Update mode, and will see all the 
attributes of this transaction, when in fact he only needs to see a few details. 

Another disadvantage is how complex it can be to program the behavior of this transaction. As we 
saw, it will go through different states and modifications with later entries. Also, it may require 
different controls every time, even of the attributes themselves. But, given this design, everything will 
be programmed in the same object. It will not be possible to customize rules or events specific to each 
of the moments we have just seen.

These disadvantages could be solved in a simple way by using what we call parallel transactions.

5



………………………………………………………………………………………………………………………..……………………………………………………

Parallel transactions

In this way, we would have a transaction for entering the order first by the 
operator. Another transaction, where the coordinator will assign that order to the 
technician and load the materials to be given to him. Lastly, a transaction, where 
the administrative assistant will be able to upload the technicians' and customer's 
comments, if any, and whether the problem was solved or not. Each one of these 
transactions will have the attributes that we are really interested in for each case.

For this, all three transactions must have the same attribute as the primary key. 
This is what makes them parallel transactions.
It is important to mention that the parallelization of transactions is done by level. 
In this example, the main levels of these transactions are parallel.

If we look at the rules section of the transactions, we see that each one has its own 
rules, totally independent from each other. This is one of the great advantages of 
working with parallel transactions. The same is true for any events we may 
program.

Let's see the application running with these modifications.

6



………………………………………………………………………………………………………………………..……………………………………………………

OPERATOR COORDINATOR ADMINISTRATIVE ASSISTANT

From this transaction (RepairOrder) an operator receives the customer's request 
and completes all the fields. We see that the value “P” –of pending– is assigned 
automatically, because it is defined in the default rule.

Some time later, the coordinator accesses this other transaction 
(RepairOrderAssigned), searches for the order, and completes the necessary data. 
The value that records the status of the order is automatically changed to “A” 
(assigned).

Finally, after the task is completed and the technical report is received, the 
administrator will manage it from the third transaction created 
(RepairOrderCompleted), filling in the corresponding fields, and the status will be 
automatically changed assigning it the value “F” (finished).

We see that, in this way, it becomes much simpler, clearer and more intuitive for 
users. And it helps to make the application scalable, to face future changes that 
may have to be made in the procedure for entering orders.

7



………………………………………………………………………………………………………………………..……………………………………………………

In Database

RepairOrder RepairOrderAssigned RepairOrderCompleted

Table
RepairOrder

RepairOrder
Id

Customer
Id

Technical
Id

RepairOrder
EnteredDate

RepairOrder
Type

RepairOrder
Price

RepairOrder
Status

RepairOrderScheduled
Date

RepairOrder
Description

RepairOrder
FinalizedDate

RepairOrderTec
Observations

RepairOrderCust
Observations

RepairOrder
ProblemSolved

RepairOrder
Id

Customer
Id

Technical
Id

RepairOrder
EnteredDate

RepairOrder
Type

RepairOrder
Price

RepairOrder
Status

RepairOrderScheduled
Date

RepairOrder
Description

RepairOrder
FinalizedDate

RepairOrderTec
Observations

RepairOrderCust
Observations

RepairOrder
ProblemSolved

1 7 NULL 2020-11-01 1 500 P 1753-01-01 1753-01-01 False

At the database level, from the main levels of these three transactions, a single 
physical table will be generated, since as we know, GeneXus designs the database 
following normalization criteria.

The generated table will contain the attributes resulting from associating the three 
transactions.
When we enter a record from the first transaction, what happens then in the table 
of our database, with the attributes to which we haven't assigned any value yet? 
What value will they have?

Empty values will be assigned by default: “0” in numeric fields, empty string in 
character type fields, a default date representing the empty value for those of 
Date type, and false for Boolean attributes.

Parallel transactions offer a clear way to keep in the structure of each transaction 
solely the information you want to work with within that program, regardless of 
the information in the same table that can be handled in another transaction. 

There is a wide range of realities that can lead us to use this type of transaction, 
which we will not examine in detail in this video. For more details on this topic, 
please visit our Wiki.

8



………………………………………………………………………………………………………………………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

9


