
………………………………………………………………………………………………………………………..……………………………………………………

Panel with multiple grids

We have seen how to use a grid in a panel object. We will now see the 
considerations we need to have when adding more than one grid to the panel.
This will give us the knowledge necessary to continue the development of our 
travel agency application.

1



………………………………………………………………………………………………………………………..……………………………………………………

Panel object with more than one grid

We will build a panel object that shows the attractions and cities of a country received by parameter.

For that, we make a Save As of the View_Attractions_MoreInfo panel and name it 
View_Attractions_CountryInfo. Then we remove its main object setting, because the goal is to have it called 
from the grid of attractions when the country's name is clicked on.

In the form, we are going to remove the titles we had, since we will show titles by section and in the grid we 
are going to add a &Detail variable of Character type. This variable will be used later to invoke a panel that 
shows the details of each attraction. 
In the events, we delete the lines that assigned the text to the titles.

In the form, we add the CountryName attribute and delete the &CountryId variable of Dynamic combo type, 
since we will not choose a country but receive it by parameter. We remove the variable from the conditions. 
We delete the ControlValueChanged event associated with the variable we removed, and the where clause 
that used it; in the Parm rule, we change the &CountryId variable to the CountryId attribute.

To group all the data of the attractions and then the data of the cities, we insert a Table control from the 
toolbar and place the variables AttractionNameFrom, AttractionNameTo, the grid and the variable TotalTrips
inside the table. To the right we insert another table as a separator and then we insert a grid to show the cities 
of the country, with the attributes CityId and CityName.

We add titles to the sections, placing a textblock “ATTRACTIONS:” above the attractions section and “CITIES:” 
above the cities section. We change the class to TextBlockTitle.

2



………………………………………………………………………………………………………………………..……………………………………………………

Changing the style of the rows and columns of a table

To define how we want the contents of a table to be shown, we must change the size of the 
table rows or columns. For example, we want the grids to have enough space in the 
corresponding row to be displayed correctly and to assign more space to the column of the 
table that shows the content of the attractions, because we have more things to show than 
for the cities.

For that we have the Columns Style and Rows Style properties of the table. First, we will 
change the columns that we know are 3, the column containing the attractions’ data, the 
column with the separating table, and the column containing the cities’ data.
If we select Table1 and click on the Column Style property, by default each column takes up 
33% of the available space. 

The possible values to be assigned to the columns’ width are a percentage of the total table 
space or in Device Independent Pixels (DIPs). This measure allows assigning units that are an 
abstraction of a pixel, don’t depend on the platform, and will later be converted to real pixels 
when the application is executed. The number of pixels that each DIP will take up depends on 
the dimensions of the screen. This allows us to scale to different screen sizes using standard 
sizes.

Let's assign 50% of the available space to the first column, 25% to the second column, and 
25% to the third column. This space is what remains after having assigned the columns with 
DIPs; that is, the percentages are relative to the value that results from subtracting the fixed 
values (in DIPs) from the total width. 

3



………………………………………………………………………………………………………………………..……………………………………………………

Changing the style of the rows and columns of a table

Now we change the height of the rows. We click on the Rows Style property and 
see that by default all the rows have a 20% assigned, except the fourth row which 
is where the grids are located. 

Here we can assign the values using percentages, DIPs and Platform Default. This 
last value corresponds to: “Using the best value depending on the platform and 
the context;” that is, it varies between platforms and for the same platform, it also 
depends on the cell's content.

We are going to assign that value to all the rows except row 4 where the grids are, 
which we set to occupy the 100% that remains available. 

4



………………………………………………………………………………………………………………………..……………………………………………………

Invocation to the detail panel

If we right-click to see the navigation of the object we built, the Output window 
shows an error; if we look at the error in the navigation list, it says that the Load 
event cannot be programmed if we have multiple grids.
If we go to the events, we see that we still have the Load event programmed as we 
had it in the original object. Here we don't consider what we said before about the 
convenience of using the Load event of the grid and not the generic one to avoid 
that situation.

So, we add Grid1 to the Load. If we select View Navigation, we see that the 
problem has been solved.

Before running, we go to the View_Attractions_MoreInfo panel and add the 
CountryId attribute required to go to the information panel of a country, when we 
click on the name of the country in the grid.
Next, in the CountryName attribute we add a Tap event where we write the 
invocation to the View_Attractions_CountryInfo panel, passing it the CountryId as 
parameter.

We run it to see all this.

5



………………………………………………………………………………………………………………………..……………………………………………………

Example at runtime

If we click on France…

6



………………………………………………………………………………………………………………………..……………………………………………………

Example at runtime

The information of the country France is opened, showing the attractions with the 
total of trips of each attraction and the total of trips to France. To the right are the 
cities of that country.

7



………………………………………………………………………………………………………………………..……………………………………………………

Navigation list of the new panel

If we go to the navigation list, we see that now there is a Level_Detail entry for 
Grid1 and another one for Grid2. 
For Grid1 we see the access to the Attraction table and the navigation of the 
formula that we saw when we implemented the panel 
View_Attractions_MoreInfo.

8



………………………………………………………………………………………………………………………..……………………………………………………

Navigation list of the new panel

If we select the node corresponding to Grid2, we see that the grid is accessing the 
City table to show the cities, filtering by CountryId, the attribute received in the 
Parm rule.

9



………………………………………………………………………………………………………………………..……………………………………………………

We add a filter by city and totals by city and country.

In a similar way to the totals shown for the attractions and the filter by name, we will show the number of 
attractions of each city and in the country, and we will add a filter by city name.

In the Variables tab, we create an &Attractions variable, another one called &TotalAttractions and a third one 
called &CityName.
Now we add the &Attractions variable to the grid by setting its Label Position property to None. Then we add 
&TotalAttractions below the grid and the filter variable &CityName above the city grid. In the grid we add the 
necessary condition for the filter.

Before that, we take the opportunity to assign the Base Transaction property in City. Here we click on Conditions 
and write the filter condition using the like operator, since we will not filter by name range, but by a similar 
name.

Then we add the Grid2.Load event where we load the &attractions variable with a Count formula with the 
AttractionName attribute. Since the base table of the grid is City, the formula will only count the attractions of 
the city corresponding to each line.

To calculate the total number of attractions, for the same reasons as when we calculated the total number of 
trips, we write the Grid2.Regresh event, in which we programmed a For Each command on the Attractions table 
to count the attractions, which will be filtered by the attribute of the country identifier received by parameter.

We calculate it every time a line is going to be loaded; that is, in the Grid2 Load event. 

10



………………………………………………………………………………………………………………………..……………………………………………………

Navigation list of the panel with the new changes

If we now see the panel navigation list, in the node Level_Detail_Grid2 we see the 
navigation of the For Each command to the Attraction table, and below it the 
navigation of the Count formula on the Attraction table.

And here we see the filter we added by CityName.

11



………………………………………………………………………………………………………………………..……………………………………………………

Viewing totals by city and country

Let's run our main object, View_Attractions_MoreInfo, to see what we did.

We click on France again...

12



………………………………………………………………………………………………………………………..……………………………………………………

Viewing totals by city and country

Now we can see the total of attractions of each city in France and the total of 
attractions of the country France.

13



………………………………………………………………………………………………………………………..……………………………………………………

Order of execution of events

AttA1 AttB1 &var1 AttA2 AttB2 &var2

Grid1 Grid2

Grid1.Refresh

Grid2.Refresh

Refresh

Grid1.Load

Grid2.Load

Start

We saw that because we had more than one grid in the panel, we had to use the 
Refresh and Load event of each grid.

But after adding these events, we wonder what the triggering order of these 
events will be in relation to the events of the panel object. 

When the panel object is executed for the first time, the events will be triggered in 
the following order:

First, the Start event (only once).

Then the generic Refresh event; that is, the panel's own Refresh event.

Finally, the Refresh of the first grid. If it has a base table, the Load event of the grid 
will be executed as many times as records are retrieved from the database, 
filtering the corresponding records. If it doesn't have a base table, the Load event 
of the grid is executed only once, and if it is a grid based on an SDT, the Load event 
is not executed.

And then the same with the Refresh and Load events of the second grid. 

14



………………………………………………………………………………………………………………………..……………………………………………………

What do you want to refresh?

AttA1 AttB1 &var1
AttA2 AttB2 &var2

Grid1 Grid2

Grid1.Refresh Grid2.Refresh

Refresh

Grid1.Load Grid2.Load

Start

Event ‘User-event’

…
Form.Refresh

endevent

Event ‘User-event’

…
Refresh

endevent

Event ‘User-event’

…
Grid1.Refresh()

endevent

Since there is more than one grid, the Refresh command must also be specialized 
to indicate which grid you want to refresh. 

The generic Refresh command (the one we had seen when we used it in the 
View_Attractions_MoreInfo panel) causes the generic Refresh to be executed, as 
well as the Refresh and Load event of each grid (that is, everything but Start).

And now we also have the Refresh method of a grid, which will refresh only the 
grid; that is to say, run the grid Refresh and Load (n times, once, or never) 
depending on whether the grid has a base table, or if it’s a grid of a collection SDT 
variable, respectively. 

In this video, we saw how we can work with multiple grids in a Panel object, in this 
case with parallel grids and the considerations we need to have when invoking the 
events of each grid. 

15



………………………………………………………………………………………………………………………..……………………………………………………

training.genexus.com

wiki.genexus.com

training.genexus.com/certifications

16


