Panel with multiple grids

GeneXus’

We have seen how to use a grid in a panel object. We will now see the
considerations we need to have when adding more than one grid to the panel.
This will give us the knowledge necessary to continue the development of our
travel agency application.

Panel object with more than one grid

@ Start Page X E. View_Attractions_Morelnfo X E- View_Attractions_Countrylnfo* X

ey] s Eens | conitos | vries

] |E|MaimTable | |\:|Table'l |

Wreal
T

ATTRACTIONS: CITIES:

B

Attraction Name From |&AttractionNameFrom |

Attraction Name To |&AttractionNameTo

|Artractionld | ‘ArtractionName | O| ‘CityName | |CountryName | |&Trips | ‘&Detail ‘

Total Trips |&TotalTrips

We will build a panel object that shows the attractions and cities of a country received by parameter.

For that, we make a Save As of the View_Attractions_Morelnfo panel and name it
View_Attractions_Countrylnfo. Then we remove its main object setting, because the goal is to have it called
from the grid of attractions when the country's name is clicked on.

In the form, we are going to remove the titles we had, since we will show titles by section and in the grid we
are going to add a &Detail variable of Character type. This variable will be used later to invoke a panel that
shows the details of each attraction.

In the events, we delete the lines that assigned the text to the titles.

In the form, we add the CountryName attribute and delete the &Countryld variable of Dynamic combo type,
since we will not choose a country but receive it by parameter. We remove the variable from the conditions.
We delete the ControlValueChanged event associated with the variable we removed, and the where clause
that used it; in the Parm rule, we change the &Countryld variable to the Countryld attribute.

To group all the data of the attractions and then the data of the cities, we insert a Table control from the
toolbar and place the variables AttractionNameFrom, AttractionNameTo, the grid and the variable TotalTrips
inside the table. To the right we insert another table as a separator and then we insert a grid to show the cities
of the country, with the attributes Cityld and CityName.

We add titles to the sections, placing a textblock “ATTRACTIONS:” above the attractions section and “CITIES:”
above the cities section. We change the class to TextBlockTitle.

Changing the style of the rows and columns of a table

@ Start Page X E. View_Attractions_Morelnfo X E- View_Attractions_Countrylnfo® X o (-] *
e conisonsvarais|
1551 °F | Fitter
:| [MainTable | | Tablet |I| p— —
ontrol Name able
Coll Sty X
Columns Style 33%;33%:34%
o Colu.. Width Unit
ATTRACTIONS: 1 50% @) Percentage Rows Style 20%:20%;20%:;20%:20%
2 25%
3 259, Device Width 100%
Attraction Name From 2 O Independent
Pixel Height 100%
B - Auto Grow True
Attraction Name To Value
Class Table
GRID Background (none)
Attractionld ‘ |AttractionName | o |CiryName | ‘CountryNama ‘ [IT‘ Cancel Visible True
: ‘ | : ‘ Invisible Mode Keep Space
: Enabled True
Total Trips | &TotalTrips
o a Scroll Factor 1

To define how we want the contents of a table to be shown, we must change the size of the
table rows or columns. For example, we want the grids to have enough space in the
corresponding row to be displayed correctly and to assign more space to the column of the
table that shows the content of the attractions, because we have more things to show than
for the cities.

For that we have the Columns Style and Rows Style properties of the table. First, we will
change the columns that we know are 3, the column containing the attractions’ data, the
column with the separating table, and the column containing the cities’ data.

If we select Tablel and click on the Column Style property, by default each column takes up
33% of the available space.

The possible values to be assigned to the columns’ width are a percentage of the total table
space or in Device Independent Pixels (DIPs). This measure allows assigning units that are an
abstraction of a pixel, don’t depend on the platform, and will later be converted to real pixels
when the application is executed. The number of pixels that each DIP will take up depends on
the dimensions of the screen. This allows us to scale to different screen sizes using standard
sizes.

Let's assign 50% of the available space to the first column, 25% to the second column, and
25% to the third column. This space is what remains after having assigned the columns with
DIPs; that is, the percentages are relative to the value that results from subtracting the fixed
values (in DIPs) from the total width.

Changing the style of the rows and columns of a table

@ Start Page X E- View_Attractions_Morelnfo X E- View_Attractions_Countrylnfo™ X voe b

R ;-_‘: ,|| 5 ,|- v General Class

l ? ‘ Filter

E HHm e | |[H Tablet E|
Control Name Table1
Rows Style X
Country Name |CountryName &
Columns Style 50%;25%;25%
i Row Height Unit 4
ATTRACTIONS: 1 pd O Percentage Rows Style 20%;20%:;20%;20%;20%
2 d
s u Device Width 100%
Attraction Name From P . O Independent
4 100% Pixel Height 100%
5 pd
@ Platform Default Auto Grow True
Attraction Name To
20 Class Table
GRID Background (none)
Attractionld ‘ ‘Artra(tionName ‘ o |CityName ‘ |CuuntryNamE | [,T‘ Cancel Visible True
. | ‘ . | Invisible Mode Keep Space
Enabled True
Total Trips |&TotalTrips
il Scroll Factor 1

Now we change the height of the rows. We click on the Rows Style property and
see that by default all the rows have a 20% assigned, except the fourth row which
is where the grids are located.

Here we can assign the values using percentages, DIPs and Platform Default. This
last value corresponds to: “Using the best value depending on the platform and
the context;” that is, it varies between platforms and for the same platform, it also
depends on the cell's content.

We are going to assign that value to all the rows except row 4 where the grids are,
which we set to occupy the 100% that remains available.

Invocation to the detail panel

@ Start Page X E. View_Attractions_Morelnfo X E. View_Attractions_Countrylnfo X Iﬂ Navigation View X

:,%:‘E%":‘ f:'t':':|.r—. Ei%?‘:t,‘,. ,‘

[]‘[]Mamﬁhm||556ﬂm H Gmﬂﬁhm|

EB Countryld |

TextblockTitleLine1

TextblockTitleLine2

Country |&Countryld ~
Attraction Name From |&AttractionNameFrom
Attraction Name To | &AttractionNameTo Event CountryName.Tap

View Attractions_CountryInfo(CountryId,”","")
/Endevent

............ Y
‘Attractionld ‘AttractinnName ‘ O| CityName Countryldji%ﬁﬁyName |&Trips ‘

Total Trips |&TotalTrips

If we right-click to see the navigation of the object we built, the Output window
shows an error; if we look at the error in the navigation list, it says that the Load
event cannot be programmed if we have multiple grids.

If we go to the events, we see that we still have the Load event programmed as we
had it in the original object. Here we don't consider what we said before about the
convenience of using the Load event of the grid and not the generic one to avoid
that situation.

So, we add Grid1 to the Load. If we select View Navigation, we see that the
problem has been solved.

Before running, we go to the View_Attractions_Morelnfo panel and add the
Countryld attribute required to go to the information panel of a country, when we
click on the name of the country in the grid.

Next, in the CountryName attribute we add a Tap event where we write the
invocation to the View_Attractions_CountryInfo panel, passing it the Countryld as
parameter.

We run it to see all this.

Example at runtime

L]

€ 2> C O localhostta elnfo-Level Deta e

The new age of

EXPLORATION
(None)
1 Eiffel Tower) Paris 2 France 4
=
2 Glenfinnan Viaduct - Glenfinnan 5 Scotland 0
3 Meet the Emperor ! Beijing 3 China 0
4 Christ the Redemmer 3~ Rio de Janeiro 1 Brazil 4
5 Rifugio Nuvolau ! Belluno 6 Italy 0
c CRRAAR TR SGATH n VARAAR - CRAlaRA A
12

If we click on France...

Example at runtime

@ View Attractions_More Info x + o
€« C @ localhost64554/app/View_Attractions_ Countrylnfo-Level Detail:countryid=2;attractionnamefron actionnameto # ® 0 =
France
ATTRACTIONS: CITIES:
1 Eiffel Tower) Paris France 4 Details 1 Paris

-

Louvre ﬂ Paris France 0 Details 2 Nice
1 Matisse . E Nice France 4 Details

The information of the country France is opened, showing the attractions with the
total of trips of each attraction and the total of trips to France. To the right are the
cities of that country.

Navigation list of the new panel

t: [C#|Detault (C# a

Pattern J ctions_Countrylnfo_Level_Detail_Grid1

[wsl View_Atiractions_Countryinfo
@ ¥ Level_Detail_Grid1 tput ‘ bl :
@5 Level_Detail_Grid2 evices ’ =
@5 Level_Detail e

AttractionName
AttractionName <= &Attract

FB-Attggtior
EH-C

If we go to the navigation list, we see that now there is a Level_Detail entry for
Grid1 and another one for Grid2.

For Grid1 we see the access to the Attraction table and the navigation of the
formula that we saw when we implemented the panel
View_Attractions_Morelnfo.

Navigation list of the new panel

Pattern: |
@ View_Atractions_Countrylnfo Data Provider View_Attractions_Countryinfo_Level_Detail_Grid2 Navigation Report
QE Level_Detail_Grid1
B3 L vo Do G
= = t: [c#|Defauit (C#

Pl =) N =
V) Level_Detail lame =
= View_Attractions_Countrylnfo_Level_Detail_Grid2

tractions evel_Detail_Grid Versio /

If we select the node corresponding to Grid2, we see that the grid is accessing the
City table to show the cities, filtering by Countryld, the attribute received in the
Parm rule.

Event Start
&Detail = "Details”
Endevent

We add a filter by city and totals by city and country.

Event Gridl.load
&Trips = Count(TripDate)
Endevent

Event Grid2.load
&Attractions = Count(AttractionName)
11 “Endevent

O WD oW N

-

120 Event Gridl.Refresh

14 &TotalTrips = @
15 For each Trip.Attraction
Layout * 16 Where AttractionName >= &AttractionNameFrom when not &AttractionNameFrom.IsEmpty()
17 Where AttractionName <= &AttractionNameTo when not &AttractionNameTo.IsEmpty()
18 &TotalTrips += 1
[1] [Eeinave | [1ol engfor
20 -Endevent

Country Name [CountryName
Event Grid2.Refresh

20
21
22
:'_:‘mmmor\ns: p— ®f 23 &TotalAttractions = @
) 24 For each Attraction

Mame From | &AttractionNameFrom 25 &TotalAttractions += 1
26 Endfor
27 - Endevent

Name To |&AttractionNameTo City Name [&CityName

Attractionld | | [AttractionName | | [CountryName | aTrips | | [aDetail ‘ Cityld | | [CityName | | [&attractions
Editing Conditions

Total Trips |&TotalTrips Total Attractions | &TotalAttractions - - - - - —
CityName like &CityName when not &CityName.isEmpty();

& o)

< >

In a similar way to the totals shown for the attractions and the filter by name, we will show the number of
attractions of each city and in the country, and we will add a filter by city name.

In the Variables tab, we create an &Attractions variable, another one called & TotalAttractions and a third one
called &CityName.

Now we add the &Attractions variable to the grid by setting its Label Position property to None. Then we add
&TotalAttractions below the grid and the filter variable &CityName above the city grid. In the grid we add the
necessary condition for the filter.

Before that, we take the opportunity to assign the Base Transaction property in City. Here we click on Conditions
and write the filter condition using the like operator, since we will not filter by name range, but by a similar
name.

Then we add the Grid2.Load event where we load the &attractions variable with a Count formula with the
AttractionName attribute. Since the base table of the grid is City, the formula will only count the attractions of
the city corresponding to each line.

To calculate the total number of attractions, for the same reasons as when we calculated the total number of
trips, we write the Grid2.Regresh event, in which we programmed a For Each command on the Attractions table

to count the attractions, which will be filtered by the attribute of the country identifier received by parameter.

We calculate it every time a line is going to be loaded; that is, in the Grid2 Load event.

10

Navigation list of the panel with the new changes

EAL
QE View_Attractions_CountryInf| ?Lli
@ Level_Detail_Grid1 Viev
°§
-5 Level_Detail LEVELS

For Each Attraction (Line: 5)

Countryld

Index: IATTRACTION1

Countryld = @Countryld
Countryld = @Countryld

@:Attraciinn (Aftractionid)

For Each City (Line: 11)

Countryld

Index: ICITY

Start from Countryld = @Countryld

Loop while Countryld = @Countryld

CityName like &CityName not &CityName. isempty() ¢————
Server

Server Paging

@=@yj Countryld Cityld)
~count(AttractionName) navigation
=Attraction (Countryld, Cityld)

If we now see the panel navigation list, in the node Level_Detail_Grid2 we see the
navigation of the For Each command to the Attraction table, and below it the
navigation of the Count formula on the Attraction table.

And here we see the filter we added by CityName.

11

Viewing totals by city and country

Attractions More Inf x +

C @ localhost:58924/View_Attractions_Morelnfo-Level_Detail * @

The new age of

EXPLORATION
(None)
1 Eiffel Tower L] Paris 2 France 4
i
2 Glenfinnan Viaduct . Glenfinnan 5 Scotland 0
3 Meet the Emperor ‘ Beijing 3 China o
4 Christ the Redemmer ..fi: Rio de Janeiro 1 Brazil 4
5 Rifugio Nuvolau i Belluno 6 Italy 0
e [T S EN [P, = [—— A

Let's run our main object, View_Attractions_Morelnfo, to see what we did.

We click on France again...

12

Viewing totals by city and country

@ View Attractions_More Info x + oyo=
<« C © localhost:52618/app/View_Attractions_Countrylnfo-Le otail:countryid=2;attractionnamefrom=;attractionnameto= * @0 = 3
France
ATTRACTIONS: CITIES:
1 Eiffel Tower L] Paris France 4 Details 1 Paris 2
==
7

Louvre ﬂ Paris France 0 Details 2 Nice 1
11 Matisse ... E Nice France 4 Details

Now we can see the total of attractions of each city in France and the total of
attractions of the country France.

13

Order of execution of events

Start

Gridl Grid2
ri l Refresh

AttA. AttB &var. AttA, AttB, &var,

Grid1.Refresh
Gridl.Load

Grid2.Refresh

Grid2.Load

We saw that because we had more than one grid in the panel, we had to use the
Refresh and Load event of each grid.

But after adding these events, we wonder what the triggering order of these
events will be in relation to the events of the panel object.

When the panel object is executed for the first time, the events will be triggered in
the following order:

First, the Start event (only once).

Then the generic Refresh event; that is, the panel's own Refresh event.

Finally, the Refresh of the first grid. If it has a base table, the Load event of the grid
will be executed as many times as records are retrieved from the database,
filtering the corresponding records. If it doesn't have a base table, the Load event
of the grid is executed only once, and if it is a grid based on an SDT, the Load event

is not executed.

And then the same with the Refresh and Load events of the second grid.

14

What do you want to refresh?

Start
Gridl Grid2
Refresh
AttA, AttB &var. AttA, AttB, &var,
Grid1.Refresh Grid2.Refresh
Gridl.Load Grid2.Load
Event ‘User-event’ Event ‘User-event’ Event ‘User-event’
Form.Refresh Refresh Grid1.Refresh()
endevent endevent endevent

Since there is more than one grid, the Refresh command must also be specialized
to indicate which grid you want to refresh.

The generic Refresh command (the one we had seen when we used it in the
View_Attractions_Morelnfo panel) causes the generic Refresh to be executed, as
well as the Refresh and Load event of each grid (that is, everything but Start).

And now we also have the Refresh method of a grid, which will refresh only the
grid; that is to say, run the grid Refresh and Load (n times, once, or never)
depending on whether the grid has a base table, or if it's a grid of a collection SDT
variable, respectively.

In this video, we saw how we can work with multiple grids in a Panel object, in this

case with parallel grids and the considerations we need to have when invoking the
events of each grid.

15

GeneXus

training.genexus.com
wiki.genexus.com

training.genexus.com/certifications

16

